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Abstract— A complex network of cross – talk between the salicylic acid (SA) and jasmonic acid (JA) pathways further fine 

tunes plant defense responses. SA can be formed from cinnamate via o – coumarate or benzoate depending on whether the 

hydroxylation of the aromatic ring takes place before or after the chain – shortening reactions. SA not only functions against 

biotrophs, but also activates plant resistance against the below – ground disease such as root – knot nematodes. The 

synthesis of jasmonates and many other oxylipins is initiated by lipoxygenases (LOXs), which catalyze the regio – and 

stereoselective dioxygenation of polyunsaturated fatty acids. JA activates plant immune responses to necrotrophic pathogens, 

some phloem – feeding insects and chewing herbivores. Also JA is also involved in other aspects of plant – pathogen 

interactions, including systemic acquired resistance (SAR). The role of ethylene (ET) in plant diseases resistance is 

dramatically different duo to type of pathogene and plant species. There are many evidence that show ethylene response is 

linked to gene for gene resistance. It is proven that there are a strong connection between different pathways related to SA, 

JA and ET for plant diseases resistance. So that SA – dependent and JA/ethylene – dependent pathwa ys induce expression of 

different sets of PR genes and result in plant resistance to different pathogens. 
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I. INTRODUCTION 

Plant resistance to pathogenic agents usually operates through a complex defense mechanism network. Compounds such as 

salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) regulate plant defense pathways to trigger appropriate responses to 

different pathogens [4]. Whereas the SA signaling pathway is mainly activated against biotrophic pathogens, the JA/ET 

signaling pathway is activated against necrotrophic pathogens [28]. So SA rely on living plant tissue for nutrients [34]; [79] 

and [13]. In contrast, plants produce jasmonic acid (JA) in response to wounding caused by insects and to necrotrophic 

microbes which obtain nutrients from dead host cells [13]; [118] and [102]. It can be said that the SA – mediated defenses 

have a major role in the basal resistance to the bacterial and oomycete pathogens, Pseudomonas syringae and Peronospora 

parasitica, respectively, turnip crinkle virus (TCV) and cucumber mosaic virus (CMV) [10]; [86]; [116]; [20] and [38]. In 

contrast, JA signaling has an important role in the basal resistance to the fungal pathogen Botrytis cinerea [13]. ET is a 

critical third player from the perspective of understanding how plants prioritize and tailor their responses to diverse 

attackers [1]. Also ET modulates SA related plant defense signaling both positively and negatively. 

At the end of this section, it is important to point out that a complex network of cross – talk between the SA and JA pathways 

further fine tunes plant defense responses [10] and [11]. Most studies have identified antagonistic interactions between the 

SA – and JA – mediated signaling pathways [112]. But the relationship between SA and JA is not always antagonistic [101]. 

The following examples that are presented sequential help to clear this concept. The application of JA depressed the 

activation of the genes for the acidic PR proteins, [Pathogenesis – related protein(s)] which are SA dependent [112]. In rice is 

demonstrated that JA signalling positively regulates plant resistance to the biotrophic pathogen, Xanthomonas oryzae pv. 

oryzae (Xoo), [101] possibly due to a common defence system activated by both SA and JA [24].  

II. BIOSYNTHESIS OF SALICYLIC ACID 

As mentioned above Salicylic acid (SA) is an important signal molecule in plants.  

Biochemical studies using isotope feeding have suggested that plants synthesize SA from cinnamate produced by 

phenylalanine ammonia lyase (PAL). PAL is a key regulator of the phenylpropanoid pathway and is induced under a variety 

of biotic and abiotic stress conditions. SA can be formed from cinnamate via o – coumarate or benzoate depending on 

whether the hydroxylation of the aromatic ring takes place before or after the chain – shortening reactions. In sunflower, 
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potato and pea, isotope feeding indicated that SA was formed from benzoate, which is synthesized by cinnamate chain 

shortening reactions most likely through a β – oxidation process analogous to fatty acid β – oxidation. [35]. Feeding of 14 – 

labeled phenylalanine and cinnamate to young Primula acaulis and Gaultheria procumbens leaf segments indicated that SA 

was formed via o – coumarat [106]. In the same plants, labeled SA was also formed after treatment with 14C – labeled 

benzoate, [106] suggesting that these plants may use both pathways for SA synthesis. Likewise, in young tomato seedlings, 

SA appeared to be formed mostly from cinnamate via benzoate but after infection with Agrobacterium tumefaciens, 2 – 

hydroxylation of cinnamate to o – coumarate was favored [68]. In tobacco and rice, several lines of evidence suggest that SA 

is synthesized from cinnamate via benzoate [50]; [88] and [84]. First, infiltration of healthy tobacco leaf discs with 0.1 mM 

benzoate increased total SA level 14 fold after 18 hours [84]. Second, in TMV – infected tobacco, large increases in the 

levels of benzoate and SA were detected [84]. Third, in both TMV – infected tobacco leaves and rice seedlings, labeled 

benzoate and SA, but not o – coumarate, were detected after feeding with 
14

C – labeled cinnamate [88] and [84] More label 

was incorporated into SA when 
14

C – labeled benzoate was fed than when 
14

C – labeled cinnamate was used, consistent with 

benzoic acid being the immediate precursor of [88] and [84]. Similar results were also obtained from the labeling 

experiments in potato and cucumber [87] and [57]. Furthermore, a benzoic acid 2 – hydroxylase (BA2H) activity was 

detected in plants including tobacco and rice. In tobacco, the BA2H activity was induced by TMV infection and was partially 

purified as a soluble 160 kDa protein that could be immunoprecipitated by antibodies against the soluble SU2 cytochrome 

P450 from Streptomyces griseolus [50]. Despite the extensive biochemical and molecular evidence, none of the enzymes 

required for the conversion of SA from cinnamate in the PAL pathway has been isolated from plants. Although partial 

purification and immunoprecipitation of a tobacco BA2H activity were reported in 1995,
 
[50], there has been no further 

report on its purification or isolation of the corresponding gene(s).  

III. BIOSYNTHESIS OF JASMONIC ACID 

The synthesis of jasmonates and many other oxylipins
1
 is initiated by lipoxygenases (LOXs), which catalyze the regio – and 

stereoselective dioxygenation of polyunsaturated fatty acids [26]; [44]; [33]; [29] and [15]. Linoleic acid (18:2) and linolenic 

acid (18:3) are oxygenated by specific LOXs at C9 or C13 to result in the corresponding (9S) – or (13S) – hydroperoxy – 

octadecadi(tri)enoic acids, which feed into at least seven alternative pathways resulting in the formation of a large variety of 

oxylipins [26] and [44]. The first committed step in the two parallel pathways for JA biosynthesis i.e. the octadecanoid 

pathway from 18:3 and the hexadecanoid pathway from 16:3 [41], is performed by allene oxide
2
 synthase (AOS), an unusual 

cytochrome P450 which uses its hydroperoxide substrate as source for reducing equivalents and as oxygen donor, and is thus 

independent of molecular oxygen and NAD(P)H. AOS catalyzes the dehydration of 13(S) – hydroperoxy – octadecatrienoic 

acid (13 – HPOT) to form an unstable allene oxide, 12,13(S) – epoxy – octadecatrienoic acid (12,13 – EOT). In aqueous 

media, 12,13 – EOT rapidly decomposes to – and – ketols, or undergoes cyclization to form 12 – oxo – phytodienoic acid 

(OPDA). As opposed to spontaneous cyclization which results in a racemic mixture of OPDA enantiomers, allene oxide 

cyclase (AOC) ensures the formation of the optically pure 9S,13S enantiomer. Dinor – OPDA (dnOPDA) is generated in the 

parallel pathway from 16:3 The short half – life of 12,13 – EOT in aqueous media (26 s at 0◦C and pH 6.7, [81]; [60] and the 

optical purity of endogenous OPDA [22] suggest tight coupling of the AOS and AOC reactions in vivo. However, physical 

contact of AOS and AOC in an enzyme complex does not seem to be required for stereochemical control of the cyclization 

reaction [90]. Only 9S,13S – OPDA, i.e. one out of four possible OPDA stereoisomers, is a percursor for biologically active 

JA. AOC is thus crucially important to establish the enantiomeric structure of the cyclopentenone ring. The crystal structure 

of Arabidopsis AOC2 has recently been solved shedding light on how the enzyme exerts stereochemical control on the 

cyclization reaction [27]. Considering the fact that cyclization occurs spontaneously in aqueous solution, AOC2 does not 

                                                           
1- constitute a family of oxygenated natural products which are formed from fatty acids by pathways involving at least one step 

of dioxygen-dependent [15].   

 Oxylipins are derived from polyunsaturated fatty acids (PUFAs) by COX enzymes (cyclooxygenases), by LOX enzymes (lipoxygenases), 

or by cytochrome P450 epoxygenase [115].  

 
2 - In organic chemistry, an allene (is a compound in which one carbon atom has double bonds with each of its two adjacent carbon 

centres.)  oxide is an epoxide of an allene. The parent allene oxide is CH2=C(O)CH2 , a rare and reactive species of only theoretical 

interest. Typical allene oxides require steric protection for their isolation. Certain derivatives can be prepared by epoxidation of the allenes 

with peracetic acid. Allene oxides tend to rearrange to cyclopropanones [114].  

Despite the esoteric character of synthetic allene oxides, allene oxides occur naturally. They are intermediates in the chemical defense of 

some plants against attack by herbivores. Specifically, a hydroperoxide of linolenic acid is the substrate for the enzyme allene-oxide 

synthase. The resulting allene oxide in turn is converted by allene oxide cyclase to jasmonic acid [2]. 
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need to be much of a catalyst in terms of lowering the activation energy barrier. Indeed, binding of the substrate or the 

transition state does not involve any induced fit mechanism. The hydrophobic protein environment and very few ionic 

interactions with a glutamate residue (Glu23) and a tightly bound water molecule, ensure binding and correct positioning of 

the substrate 12,13 – EOT. Steric restrictions imposed by the protein environment enforce the necessary conformational 

changes of the substrate‟s hydrocarbon tail resulting in the absolute stereoselectivity of the AOC2 – mediated as opposed to 

the chemical cyclization reaction [27]. 

IV. BIOSYNTHESIS OF ETHYLENE 

The biochemistry of ethylene biosynthesis has been a subject of intensive study in plant hormone physiology [36]. The 

discovery of ethylene as a plant growth regulator can be attributed to the work of the Russian scientist [23]. He reported that 

dark – grown pea seedlings showed a reduced hypocotyl growth in combination with an exaggerated hypocotyl bending 

when exposed to illumination gas [23]. Neljubov 1901 [23] could pinpoint ethylene gas as the active component that caused 

dark – grown pea seedlings to bend, by flowing the illumination gas over several filters prior to exposing the seedlings. This 

typical ethylene response of dark – grown seedlings was later defined as the triple response: (1) shortening of the hypocotyl 

and roots, (2) radial swelling of the hypocotyl, and (3) the exaggeration of the apical hook
3
 [71]. 

Ethylene is formed from methionine via S – adenosyl – L – methionine (AdoMet) and the cyclic non – protein amino acid 1 – 

aminocyclopropane – 1 – carboxylic acid (ACC). ACC is formed from AdoMet by the action of ACC synthase (ACS) and 

the conversion of ACC to ethylene is carried out by ACC oxidase (ACO) [36]. In addition to ACC, ACS produces 5' 

methylthioadenosine, which is utilized for the synthesis of new methionine via a modified methionine cycle. This salvage 

pathway preserves the methylthio group through every revolution of the cycle at the cost of one molecule of ATP. Thus high 

rates of ethylene biosynthesis can be maintained even when the pool of free methionine is small [70]. 

Analysis of ACS gene induction in mutant fruit with disrupted ethylene signalling has been used to identify which ACS gene 

is ethylene – regulated. The Never ripe (Nr) mutant cannot perceive ethylene due to a mutation in the ethylene – binding 

domain of the NR ethylene receptor [73] and [53]. Fruit from the ripening inhibitor (rin) mutant do not show autocatalytic 

ethylene production [94]. and cannot transmit the ethylene signal downstream to ripening genes due to a mutation in the RIN 

transcription factor [52]. Nr and rin mutant fruit have shown that LEACS2 expression requires ethylene whereas LEACS1A 

and LEACS4 exhibited only slightly delayed expression in Nr indicating that ethylene is not responsible for regulation of 

these genes [19]. All four fruit ACS genes showed the same expression patterns in rin fruit as in mature green wild – type 

fruit, but did not show any ripening – related changes of expression [19]. Therefore, it has been proposed that LEACS1A and 

LEACS6 are involved in the production of system 1 ethylene in green fruit [19]. System 1 continues throughout fruit 

development until a competence to ripen is attained, where upon a transition period is reached, during which LEACS1A 

expression increases and LEACS4 is induced. During this transition period, system 2 ethylene synthesis (autocatalysis) is 

initiated and maintained by ethylene – dependent induction of LEACS2 [19]. Antisense inhibition of LEACS2, which also 

down – regulated LEACS4, reduced ripening – related synthesis of ethylene to 0.1% of control fruit. The antisense fruit 

displayed an abnormal pattern of ripening such as reduced lycopene accumulation, delayed softening and a much reduced 

climacteric peak [91].  

V. THE ROLE OF SALICYLIC ACID IN PLANT DEFENSE 

Salicyclic acid plays crucial role in various plant – pathogen interactions by activating defense responses. It is typically 

involved in defense against microbial biotrophs such as the bacteria Pseudomonas syringae [7]. SA biosynthetic pathway has 

been well characterized in plants. It includes two distinct enzymatic pathways, isochorismate synthase (ICS/SID2) – 

mediated isochorismate pathway and phenylalanine ammonia lyase (PAL) – mediated phenylalanine pathway, which has 

been reported to be required for both systemic and local acquired resistance as well as PCD [76]. Thus, SA is involved in 

inducing systemic acquired resistance (SAR) [108] and [67].  

Stimulation of defense responses occurs not only at the recognition site of microbes, but also in distal parts of plants to 

protect undamaged tissues from subsequent microbial pathogen invasion for a long – lasting protection, commonly known as 

SAR [77]. Evidences from grafting experiments suggest that methyl salicylate (MeSA) is the critical mobile signal for SAR 

in tobacco plant [105]. SA signaling is activated to suppress viral, bacterial, and fungal pathogens invasion in many plant 

                                                           
3
 - Hook – like structure which develops at the apical part of the hypocotyl in dark – grown seedlings in dicots.  
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species through up – regulation of pathogenesis – related (PR) genes expression and the development of SAR [58]. The role 

of SA signaling in disease resistance was first illustrated by White and coworkers, who demonstrated that treatment of 

tobacco with SA, or its derivative aspirin significantly stimulated PR protein accumulation and enhanced plant resistance to 

tobacco mosaic virus (TMV) infection [97]. Increasing progress revealed that SA played an essential role in resistance 

against multiple pathogens [40]; [85] and [72]. A study conducted on wheat demonstrated that SA exerted direct and 

significant impact on Fusarium graminearum, the major causal agent of fusarium head blight in wheat; conidia germination 

and mycelial growth were remarkably inhibited at higher SA concentrations [85]. Exogenous application of SA induces PR1, 

PR3 (chitinase), PR5 (thaumatin – like), and PR9 (peroxidase) gene expression as well as the resistance against bacterial 

pathogen Pseudomonas syringae pv. syringae in barley, which is characterized by a concomitant increase in endogenous SA 

levels [72]. Additionally, foliar application of SA can induce resistance against Fusarium wilt caused by Fusarium 

oxysporum f. sp. Phaseoli in common bean which is accompanied with elevated contents of endogenous free and conjugated 

SA as well as activities of PAL and peroxidases [96]. In tomato, SA treatment induces expession of PR2 and PR3 proteins, 

activity of PAL, concentration of antioxidants as well as photosynthesis, thereby reducing the infections caused by Potato 

virus X [109]. Over – expression of SA biosynthetic genes or mutation in SA – related genes also affects plant disease 

resistance [76] and [75]. Over – expression of two bacterial SA biosynthetic genes in transgenic tobacco conferred highly 

increased SA accumulation accompanied with upregulated defense genes expression particularly those encoding PR proteins, 

and thus enhancing plant resistance to viral and fungal infection [75]. Transgenic tobacco plants with low or no salicylic acid 

biosynthesis capacity are defective to induce SAR [108]. Interestingly, exogenous SA application could establish SAR and 

enhance disease resistance to pathogens even in the SA biosynthetic mutants [76]. SA and benzothiadiazole (BTH, a SA 

analogue) treatments on perennial ryegrass (Lolium perenne L.) enhance expression levels of PR genes and deposition of 

callose, and thereby minimizing the incidence as well as severity of gray leaf spot disease (causal agent: Magnaporthe 

oryzae) [3]. However, plant responses to SA treatment are strictly dependent on developmental stage for a given pathogen. 

For instance, exogenous SA induces resistance to Magnaporthe grisea in mature rice plants, but not in young rice plants, 

which is accompanied with increased accumulation of SA and PR proteins, resulting in the formation of hypersensitive 

reaction lesions [110]. Environmental factors also stimulate SA accumulation and thus influence plant resistance. Cucumber 

plants exhibit increased resistance against Sphaerotheca fuligineathan under red light and this resistance is associated with 

enhanced SA – dependent signaling [40]. SA not only functions against biotrophs, but also activates plant resistance against 

the below – ground disease such as root – knot nematodes (RKN) [14] and [37]. RKN are sedentary endoparasite which feed 

cells for their nutrition and keep its sedentary life cycle [32]. The yield loss in agriculture caused by nematodes is 

devastating, which accounts for 5% to 12% of annual crop loss worldwide [69]. Branch et al. [14] demonstrated that SA was 

involved in Mi – 1 – mediated defense response to RKN (Meloidogyne incognita) in tomato. SA induces glutathione status in 

tomato plant and imparts resistance against RKN M. incognita [42]. Foliar application of SA is able to trigger SAR response 

to RKN in tomato roots [99]. To date, numerous scientific studies indicate that activation of SA pathway is important for 

induced defense in plants against biotrophic pathogens, such as Pseudomonas syringae and Golovinomyces cichoracearum 

[103] and [31]. However, there are some exceptions that conflict with the current model. For instance, Novakova et al. [82] 

showed that SA was involved in the resistance against necrotrophic pathogen Sclerotinia sclerotiorum (Lib.) de Bary, which 

was previously known to be functioned by JA and ET signaling pathways. In spite of contradictory evidences, it is well 

accepted that SA is an important endogenous marker and crucial for plant disease resistance against biotrophic as well as 

necrotrophic pathogens. A number of studies demonstrate that invading pathogens or insects release effectors proteins that 

interfere or block the plant immune system for the benefit of its own establishment to cause disease development in the plant 

tissue [25]; [63] and [80]. Virulent Pseudomonas syringae produces the bacterial effector proteins virulence factor coronatine 

(COR), which is a phytotoxin that structurally and functionally mimic methyl jasmonate and suppresses SA – dependent 

immune defenses, thus the pathogen utilizes the hormone – regulated defense signaling network to promote susceptibility of 

the host [25] and [63]. Meanwhile, the fungal pathogen Sclerotinia sclerotiorum participates actively in the degradation of 

SA, and the presence of low levels of SA affect growth or oxalate production by Sclerotinia sclerotiorum [17]. 

Hyaloperonospora arabidopsidis (Hpa) causes downy mildew in Arabidopsis thaliana. During their interaction, Hpa effector 

suppresses SA – induced interaction and attenuates responses to SA [98]. Interestingly, mollusks secrete phytohormone – 

like substances into their mucus which contain significant amounts of SA and induce SA – responsive gene PR1 expression 

in wounded leaves of Arabidopsis thaliana, suggesting the potential of mucus in regulating plant defense [49]. It is now clear 

that SA plays important role in activating plant defense mechanism and therefore application of SA could be considered as a 

feasible strategy to minimize biotic stress induced yield reduction in commercial agriculture. 
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VI. THE ROLE OF JASMONIC ACID IN PLANT DEFENSE 

As previously mentioned Jasmonic acid and its metabolites, including methyl jasmonate (MeJA), are lipid – derived 

compounds originating from plastid membrane a – linolenic acid. They act as signals to mediate plant growth and 

developmental processes, as well as plant responses to biotic and abiotic stresses [2]. Numerous reports indicate that JA 

activates plant immune responses to necrotrophic pathogens, some phloem – feeding insects and chewing herbivores [48]. JA 

is also involved in other aspects of plant – pathogen interactions, including SAR. Application of JA to rice plants induces 

resistance against necrotrophs pathogen Rhizoctonia solanivia through the activation of phenylpropanoid pathway [89] 

Predominantly, JA responses are mediated through the coronatine insensitive 1 (COI1 Fbox protein and coi1 mutants possess 

elevated SA levels and exert more resistance to bacterial pathogens [9]. On the contrary, coi1 plants show greater 

susceptibility to Botrytis cinerea and Alternaria brassicicola [13]. Stotz et al. [39] unveiled JA – dependent and COI1 – 

independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana; however, AUXIN RESPONSE 

FACTOR 2 (ARF2) acts as a negative regulator of defense responses against this pathogen. The environmental factors such 

as light quality can influence plant resistance via JA pathway. Low red/far – red ratios reduce Arabidopsis resistance to 

Botrytis cinerea and JA responses via a COI1 – JAZ10 – dependent and SA – independent mechanism [43]. Increasing 

evidences have proved that JA is critical for plant resistance against plant disease RKN [65] and [61]. After the foliar 

treatment with MeJA, the expression profiles of JA genes were induced resulting in highly enhanced resistance against RKN 

(Meloidogyne incognita) in tomato plants [111]. Transcript profiles from microarray analyses indicate that an intact JA 

signaling pathway is required for tomato susceptibility to RKN [66]. Several studies demonstrated that other hormones might 

function to suppress RKN through the crosstalk with JA pathway. Nahar et al. [62] reported that BRs suppressed the JA 

biosynthesis and signaling pathway under RKN infestation in rice and thus determined the outcome of the rice – RKN 

interaction through crosstalk between BR and JA pathway. Exogenous application of MeJA to the rice shoots also induces a 

strong systemic defense response in the roots, making the plant more resistant to nematodes infection, while ET activates the 

JA biosynthesis and signaling pathway in a facultative manner, indicating a pivotal role of JA pathway in systemically 

induced resistance against RKN in the root [61]. Environmental factors also play remarkable role in determining severity of 

RKN infection through the activation of JA pathway. Elevated CO2 changes the interactions between nematode and tomato 

genotypes differing in the JA pathway. CO2 enrichment possibly impairs the allocation of plant resources between growth 

and defense by affecting contents of secondary metabolites, volatile organic compounds and C: N ratio that eventually 

reduces plant resistance to RKN in tomato [121] and [122]. In addition to well established role in resistance against 

necrotrophic pathogens in various plant species, JA has also been reported to induce plant resistance against biotrophic 

pathogens [124] and [5]. Exogenous MeJA significantly induced nine PRs gene expression and enhanced the powdery 

mildew resistance in the susceptible varieties of wheat, suggesting that JAs play important role in defense against wheat 

powdery mildew infection and manipulation of JA pathway through breeding may improve powdery mildew resistance in 

wheat [124]. Exogenous application of JA can also enhance resistance to the bacterial blight and blast caused by 

Xanthomonas oryzae pv. oryzae [101] and Magnaporthe oryzae, respectively in rice [83]. It's worth mentioning that rice 

plants constitutively expressing the pathogen – responsive WRKY30 gene showed enhanced resistance against fungal 

pathogens Rhizoctonia solani and blast fungus Magnaporthe grisea, concomitantly with increased endogenous JA 

accumulation and induction of JA biosynthesis related genes expression [119]. 

VII. THE ROLE OF ETHYLENE IN PLANT DEFENSE 

Plants have evolved sophisticated detection and defense systems to protect themselves from pathogen invasion. Ethylene 

seems to play an important role in various plant disease resistance pathways. However, depending on the type of pathogen 

and plant species, the role of ethylene can be dramatically different. Plants deficient in ethylene signaling may show either 

increased susceptibility or increased resistance. For example, in soybean, mutants with reducedethylene sensitivity produce 

less severe chlorotic symptoms when challenged with the virulent strains Pseudomonas syringae pv glycinea and 

Phytophthora sojae, whereas virulentstrains of the fungi Septoria glycines and Rhizoctonia solani cause more severe 

symptoms [113]. Simiarly, in Arabidopsis, the ethylene – insensitive mutant ein2 develops only minimal disease symptoms 

as the result of enhanced disease tolerance when infected by virulent P. syringae pv tomato or Xanthomonas campestris pv 

campestris [8]. However, the ein2 mutant also displays enhanced susceptibility to the necrotrophic fungus Botrytis cinerea 

[12]. On the basis of these observations, ethylene seems to inhibit symptom development in necrotrophic pathogen infection 

but enhances the cell death caused by other type of pathogen infection. In fact, Arabidopsis protoplasts isolated from the etr1 

– 1 mutant display reduced cell death from the fungal toxin fumonisin B1 [107 and presence of the ein2 mutation reduces cell 
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death in the accelerated cell death 5 (acd5) mutant [59] supporting a role for ethylene in the regulation of programmed cell 

death. 

Upon pathogen infection, the avirulence signal (avr) carried by pathogens is recognized by a specific plant resistance (R) 

gene product [64]. This avr/R interaction is called gene – for – gene resistance and often triggers a strong defense mechanism 

that includes the programmed cell death of plant cells at the site of infection (known as the hypersensitive response), 

resulting in efficient containment of the pathogen. In tomato, it has been demonstrated that a direct interaction between the R 

gene Pto and the avirulence gene avrPto in the P. s. tomato strain determines gene – for – gene specificity in this plant – 

pathogen interaction [104] and [95]. Recently, a transcription factor, Pti4, has been identified on the basis of its specific 

interaction with Pto [123]. Interestingly, this Pti4 protein shares extensive similarity with the amino acid sequences of 

EREBPs and can specifically bind the GCC – box cis element present in the promoter of many ethylene – regulated pathogen 

– related (PR) genes. Expression of Pti4 in tomato leaves is rapidly induced by ethylene, and this induction precedes 

expression of GCC – box – containing PR genes. Moreover, phosphorylation of Pti4 by the Pto kinase enhances its binding 

to the GCC box. These results provide evidence that the ethylene response is linked to gene – for – gene resistance in tomato.  

VIII. INTERACTION AMONG THE SALICYLIC ACID, JASMONIC ACID AND ETHYLENE IN PLANT DEFENSE 

Activation of the hypersensitive response triggers a longlasting response known as systemic acquired resistance, which 

provides immunity against subsequent infections caused by a broad spectrum of pathogens [51]. In many cases, systemic 

acquired resistance is characterized by an increase in endogenous salicylic acid (SA) levels and expression of a subset of PR 

genes, as well as enhanced resistance to a broad spectrum of virulent pathogens. However, some pathogens can induce plant 

defense responses via activation of the ethylene and JA signal transduction pathways. Arabidopsis plants with defects in 

ethylene perception (ein2) or JA signaling (coi1) fail to induce a subset of PR gene expression, including the plant defensin 

gene PDF1.2, a basic chitinase (PR-3), and an acidic hevein – like protein ( a lectin – like protein from Hevea brasiliensis) 

(PR-4), resulting in enhanced susceptibility toward certain pathogens [46]. Interestingly, the induction of PDF1.2 requires 

both intact JA and ethylene signaling, whereas the majority of other responses mediated by these hormones are specific to 

only one of the signals. This suggests that the ethylene and JA pathways interact with each other, co – regulating expression 

of some genes involved in plant defense. Because only a small subset of genes is affected by both signals, the interaction 

between these two pathways is likely to be downstream, possibly at the level of the specific defense gene promoters. 

Nevertheless, ethylene and JA signaling may also function independently to regulate distinct processes in defense response. 

A recent study has shown that pathogen – or elicitor – induced accumulation of the defense compound 3 – 

indolylmethylglucosinolate is mediated by JA but not by ethylene or SA [30] indicating that ethylene and JA pathways may 

have different roles in disease resistance. Although SA – dependent and JA/ethylene – dependent pathways induce 

expression of different sets of PR genes and result in plant resistance to different pathogens, there appear to be considerable 

interactions between these two pathways in systemic acquired resistance. Here, use of the word “cross – talk” is reserved for 

communications between two separate, linear signal transduction pathways that are simultaneously activated in the same cell. 

Therefore, the components of the two signaling pathways have to be (1) shown to be expressed in the same cell and (2) 

demonstrated to physically interact under normal physiological conditions [100]. A recent survey of changes in the 

expression levels of 2375 selected genes upon pathogen infection or SA, JA, and ethylene treatment had revealed that 

although some genes are affected by one signal or another, many respond to two or more defense signals [92]. These results 

indicate the existence of a substantial network of regulatory interaction and coordination among different plant defense 

pathways. For example, two Arabidopsis mutants that constitutively express PR genes, cpr5 and cpr6, express both PR – 1 

and PDF1.2 genes in the absence of pathogen infection. Although the constitutive expression of PR – 1 is dependent on SA, 

it is only partially suppressed by the npr1 (for non – expressor of PR – 1) mutation, a gene that is required downstream of SA 

to activate PR – 1 gene expression, indicating the existence of a SA – mediated, NPR1 – independent response [55]. Only 

when ethylene signaling is also blocked by ein2 in addition to npr1 mutation in cpr5 and cpr6 mutants is PR – 1 gene 

expression abolished completely. Furthermore, ein2 potentiates SA accumulation in cpr5 and dampens SA accumulation in 

cpr6. These results suggest the existence of interactions between ethylene – and SA – dependent signaling through an NPR1 

– independent pathway. Interestingly, a suppressor of npr1, ssi1, which completely bypasses NPR1 function, constitutively 

expresses the JA/ethylene – dependent marker PDF1.2 gene in an SA dependent manner, suggesting that SSI1, together with 

CPR5 and CPR6, may participate in the interactions between the SA – and JA/ethylene – dependent pathways. Recently, a 

null mutation in the EDR1 gene has been shown to enhance resistance to P. syringae and Erisyphe cichoracearum, and 

causes rapid activation of defenserelated genes such as PR – 1 [16]. This enhanced disease resistance depends on the SA –

induced defense response pathway and is independent of the JA/ ethylene pathway. However, PR – 1 gene expression, which 

https://en.wikipedia.org/wiki/Lectin
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is SA – dependent, is highly induced by ethylene treatment inedr1 mutant plants, whereas it is almost undetectable in wild – 

type plants. This again suggests that there is significant interaction between the ethylene and SA – dependent pathways. In 

this case, ethylene potentiates SA – mediated PR – 1 gene expression, and EDR1 negatively regulates this process. Removal 

of EDR1 produces a dramatic effect of ethylene on SA – dependent responses, resulting in enhanced disease resistance in 

edr1 mutant plants. EDR1 encodes aputative MAPKKK similar to CTR1, but unlike the ctr1 mutant, edr1 does not display 

ethylene response phenotypes. There are many other examples of similar interaction between the SA and JA/ethylene 

pathways. Perturbations in SA – dependent signaling have been reported to affect JA/ethylene-dependent signaling 

represented by PDF1.2 expression [45] ; [46]; [54]; [55]; [47]; [117] and [79]. It has been noticed that there is a correlation 

between a decrease in SA levels and increased PDF1.2 expression, indicating that SA may have an inhibitory effect on 

JA/ethylene biosynthesis or signaling [21]. Consistent with this observation, PDF1.2 mRNA accumulates at higher levels in 

mutants defective in SA signaling compared with levels in the wild type after B. cinerea infections [56]. This may also 

explain why mutants that disrupt SA – mediated responses become sensitized for activation of the JA/ethylene pathway [54] ; 

[55] and [117]. On the other hand, JA/ethylene can also repress the expression of SA – induced genes by inhibiting SA 

accumulation. For example, the mpk4 (for MAP kinase 4) mutant, which has elevated SA levels and constitutive activation of 

SA – dependent signaling, failed to induce the expression of PDF1.2 gene upon JA treatment [78]. This could result from 

high SA levels antagonizing JA/ethylene signaling as described above. However, when the mpk4 mutant is crossed to plants 

carrying the nahG transgene, which encodes an enzyme that degrades SA, activation of PDF1.2 expression is still blocked in 

the nahG mpk4 double mutant. These results suggest that block in JA/ethylene signaling relieves the suppression of SA 

signaling. Nevertheless, it should be pointed out that because both JA – and ethylene – dependent pathways are involved in 

regulating PDF1.2, changes in this gene expression may not always reflect an alteration in the ethylene – dependent pathway. 

In fact, although mpk4 dwarfism was similar to that of the ethylene constitutive triple – response mutant ctr1, MPK4 does not 

act in the ethylene response pathway between CTR1 and EIN2 [78]. Recent studies of an ethylene pathway gene ERF1 have 

shown that activation of ethylene responses by ERF1 overexpression in Arabidopsis plants is sufficient to confer resistance to 

B. cinerea but reduces SA – mediated tolerance against P. s. tomato DC3000 [74] suggesting a negative regulation between 

ethylene and SA responses. Despite the above – mentioned antagonistic interactions, there are examples in which both 

ethylene – and SA – dependent pathways cooperate on defense – related responses. In Arabidopsis, both ethylene and SA 

signal transduction pathways are necessary to mount an effective defense response against Plectosphaerella cucumerina [74]. 

In tomato, the transgenic ethylene – underproducing ACC deaminase line (ACD) and the ethylene –insensitive mutant Nr 

show reduced accumulation of SA upon X. campestris pv vesicatoria infection, resulting in less severe disease symptoms 

[93]. Taken together, these results demonstrate that both positive and negative interactions between ethylene and SA 

pathways can be established, depending on the type of pathogen or specific defense responses. This is consistent with the 

results that ein2 mutation increases SA accumulation in the cpr5 mutant but decreases SA levels in the cpr6 mutant, which 

represents a distinct resistance pathway regulated by CPR5 [55]. 

IX. CONCLUSION 

As sessile organisms, plants are under frequent attack from a broad spectrum of microbial pathogens, including biotrophic 

and necrotrophic pathogens, namely biotrophs and necrotrophs respectively. SA is a crucial defense signal molecule against 

biotrophs. Also ethylene and jasmonate, play a major role in defense responses against necrotrophs. Although SA – 

dependent and JA/ethylene – dependent pathways induce expression of different sets of PR genes and result in plant 

resistance to different pathogens, there appear to be considerable interactions between these two pathways in systemic 

acquired resistance. 
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