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Abstract— In-silico molecular docking has emerged as a transformative tool in pesticide discovery, offering detailed insights 

into the interactions between small molecules and biological targets. This review explores the foundational aspects of 

molecular docking, outlining its critical steps, including target selection, ligand preparation, docking simulation, scoring and 

post-docking analysis. It delves into the various types of molecular docking rigid and flexible. The role of molecular docking 

in insect pest management is examined, highlighting its effectiveness in identifying novel targets, optimizing existing 

compounds and reducing off-target effects. Furthermore, the diverse applications of molecular docking in pesticide 

development are discussed, from lead compound identification and structure-based design to resistance management and 

combination strategies. By leveraging molecular docking, researchers can design more effective and environmentally friendly 

pesticides, marking a paradigm shift in sustainable pest management practices.  

Keywords— In-silico molecular docking, Pesticide discovery, Insect pest management, Molecular docking applications, 

Pesticide development, Computational pesticide design, Structure-based drug design, Virtual screening, Lead compound 
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I. INTRODUCTION 

Food and nutritional security are of utmost importance for the burgeoning population in the country. On an average 15-20% of 

potential crop production is lost due to insects, pests, weeds, diseases, nematodes, rodents etc., thus plant protection efforts aim 

at minimizing crop losses. There are many techniques and technologies for insect-pest control including biological control, 

transgenic plants, cultural control, mechanical control, physical control and increasingly biopesticides1, but for many crop-

pest-geography scenarios insecticides remain a critical component. 

Globally, insects may be destroying an estimated 18-20% of the annual crop production (estimated value=>US$470 billion).2 

Innovation of insect pest control tools has been a critical need for centuries and continues with an expanding global population 

and the longstanding threats from insect and insect-borne diseases3. Amongst different measures, chemicals quickly gained 

great popularity as an efficient, labour-saving and economic tool in pest management in most agricultural sectors.4 In other 

words, the most frequent method of managing pests and diseases in most agricultural sectors is through the application of 

pesticides.5 
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Strategic resources like pesticides are essential to the security of the country's food supply. Global figures show that after using 

pesticides, 35% of cash crops are lost annually; if pesticides are discontinued, this loss climbs to 70%.6 In addition to saving 

labor, lowering the price of agricultural products and increasing economic efficiency, the use of pesticides is crucial for several 

processes related to plant growth, regulation, harvesting, storage, transportation and processing.7 The efficacy of pesticide 

development has risen significantly with the adoption of computer technologies.8-9 One of the most representative computer 

techniques, molecular docking technology, can improve our capacity to address issues like pesticide molecular target 

identification, pesticide molecular design, pesticide resistance prediction, toxicological analysis and environmental safety risk 

assessment.10-14 

During the early stages of pesticide creation, traditional methods such as similar synthesis, random screening and natural active 

agent simulation played a significant role.15-18 For example, the herbicides alachlor19, nitrofen20 and triadimefon21 were 

discovered as pesticides by random screening approaches. However, the limitations of using traditional methods to create 

pesticides are high blindness, low success rates, and prolonged development cycles, all of which severely restrict the amount 

of research and development that can be done on pesticides.  

 

FIGURE 1: Cost of agrochemical development (dashed line) versus screening success (solid line) 

Screening success ratio=1/number of compounds that need to be screened for each product found. Data adapted, in part, from 

other studies.22 

The effective development of a new pesticide necessitates the synthesis and screening of over 159,000 chemicals at a cost 

of about $286 million, with an average period of 11.5 years from first synthesis to market introduction, according to 

internationally accepted statistics.22 Additionally, weed and pest resistance are becoming exacerbated due to increased chemical 
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use. The creation of new chemical pesticides is vital because of the need to solve important issues including pesticide residues 

and the harmful effects of pesticides on non-target organisms.23-34 

One of the key instruments for pesticide research and development, virtual screening technology with molecular docking at its 

core can compensate for the lack of traditional pesticide creation methods by substantially raising the screening success rate 

for pesticide lead compounds. For instance, Vaidya and associates35 screened the abscisic acid receptor agonist Opabactin from 

the ZINC database using the GLIDE docking approach. Another significant use of molecular docking is reverse docking, which 

is useful for screening chemicals for possible targets for protein pesticides. To some extent, the toxicity of pesticides can be 

mitigated in the early stages of pesticide production by using reverse docking to identify probable targets of first-to-compound 

chemicals. By examining the interaction between small-molecule ligands and receptor biomolecules, a theoretical technique 

called molecular docking is utilized to investigate the interaction between proteins and ligands. It can predict the binding 

mechanism and affinity strength.36-38 

Thus, molecular docking has also been applied to the study of pesticide resistance mechanisms and the environmental detection 

of pesticides and their metabolites39-41. Molecular docking has investigated the use of several machine learning (ML) techniques 

within the past decade42-43. The most common method entails creating scoring functions to estimate a protein-ligand complex's 

binding affinity. These estimations are then applied to separate various chemicals and binding positions to identify genuine 

binders and estimate their binding mode. Because molecules are naturally represented as graphs (a collection of nodes or atoms 

connected by edges or bonds), a deep neural network-based method called deep graph learning can learn from graph-structured 

data-has been used more and more in this research.44-45 

A so-called deep docking approach was recently proposed by Gentile et al.46 to expedite the virtual screening of large databases. 

This deep learning model uses docking and is based on a multilayer feed-forward neural network. Its goal is to correlate 

molecular fingerprints with docking scores of molecules. With the help of this technique, Tang et al.47 were able to speed up 

docking-based virtual screening and find a novel A2AR antagonist for extremely large molecular libraries. Tang et al.47 found 

a novel A2AR antagonist for enormous chemical libraries by using this strategy to speed up docking-based virtual screening. 

 

FIGURE 2: Workflow of virtual screening for different compounds adapted from other studies
48

 

Molecular docking technology has emerged as a powerful and increasingly popular tool in pesticide development. However, 

alongside its numerous advantages, it also has certain limitations. These drawbacks are highlighted in various pesticide research 

articles; for instance, Chen encountered difficulties in obtaining virtual screening results using a single screening method.49 

Additionally, the molecular docking program itself has inherent issues, such as the flexibility of the target protein and the 

accuracy of the scoring function. Although there have been significant advancements in improving the scoring function, 

accurately and quickly predicting receptor-ligand interactions continues to be a major challenge.50-51 

Therefore, although docking experiments have made valuable contributions to our understanding of target-ligand interactions 

in drug discovery projects, their results should be viewed as preliminary and as a foundation for more comprehensive and 

accurate analyses.52 This article reviews the fundamental principles of molecular docking, available docking software, and 

pesticide-related databases, along with the challenges associated with molecular docking. We provide a summary of how this 
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method is applied in pesticide development, discuss the issues encountered in its use, and explore the prospects for molecular 

docking in the field of pesticides. Additionally, we aim to offer a theoretical basis to support the development and application 

of new pesticides. 

II. PRINCIPLE OF MOLECULAR DOCKING 

Molecular docking is a widely used computational technique for examining how small molecules bind to receptors. The core 

concept of molecular docking involves assessing the binding strength of these small molecules by positioning them within the 

active site of the receptor. This process relies on geometric, energetic, and chemical complementarity to determine the most 

favorable binding mode.52-57 This approach is rooted in Emil Fischer's "lock-and-key model," which postulates that enzymes 

and substrates have precisely complementary structures, similar to a key fitting into a lock, with both the enzyme and substrate 

being rigid and unchanging.58 

However, as research has progressed, experimental data have increasingly shown that the conformations of both receptors and 

small molecules are not static during binding. Instead, the concept of "induced fit," proposed by Koshland, has gained 

prominence.59-63 This theory posits that the binding interaction is dynamic, with the receptor adapting its conformation in 

response to the presence of the small molecule. Consequently, the receptor and small molecule undergo mutual adjustments to 

achieve an optimal complementary fit.64 

 

FIGURE 3: General procedures for molecular docking adapted from other studies
65

 

III. STEPS OF MOLECULAR DOCKING: 

3.1 Retrieval and preparation of target receptor structure:  

The retrieval and preparation of the target receptor structure are crucial initial steps in molecular docking, as the quality of the 

receptor model directly impacts the accuracy of the docking results. In molecular docking, the target receptor structure serves 

as the binding site for ligands and influences the accuracy of docking predictions. Retrieving and preparing this structure 

involve accessing relevant databases, resolving structural issues and optimizing the receptor for docking simulations. 

• Accuracy: The quality of the receptor structure directly impacts the reliability of docking results.66 

• Specificity: Proper preparation ensures that the receptor reflects the biological environment accurately, allowing for 

specific ligand-receptor interactions 67. 

• Compatibility: Preparing the receptor structure involves addressing issues such as missing atoms, water molecules 

and other heteroatoms, ensuring compatibility with docking software.68 

3.1.1 Retrieval of Target Receptor Structure: 

1) Identify the Receptor: 

Determine the biological target of interest (e.g., a protein, enzyme, or receptor) relevant to the study. 
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2) Access Structural Databases: 

Retrieve the 3D structure of the receptor from structural databases such as the Protein Data Bank (PDB) (http://www.rcsb.org/). 

The PDB is a comprehensive resource containing experimentally determined structures of proteins, nucleic acids and complex 

assemblies.69  

3.1.2 Selection Criteria: 

Choose the appropriate structure based on resolution, completeness, and relevance. High-resolution X-ray crystallography or 

NMR structures are preferable. 

If multiple structures are available, select the one that best represents the biologically active conformation or the one with a co-

crystallized ligand if available. 

3.1.3 Preparation of Target Receptor Structure: 

A) Remove Unnecessary Molecules: 

• Water Molecules: Remove crystallographic water molecules unless they are known to play a critical role in ligand 

binding. 

• Ligands and Ions: Remove any bound ligands, ions, or other small molecules that are not part of the binding site 

unless they are essential for receptor stability. 

B) Add Hydrogen Atoms: 

Hydrogen atoms are typically not resolved in X-ray crystallography. Add hydrogen atoms to the receptor structure to 

ensure proper hydrogen bonding and electrostatic interactions during docking. 

C) Assign Atomic Charges: 

Assign appropriate atomic charges to the receptor atoms. The choice of charge model (e.g., AMBER, CHARMM) 

can affect the docking results. 

D) Check for Missing Residues and Atoms: 

Identify and rebuild any missing residues or atoms using homology modeling tools or software like Modeller or Swiss-

Model. 

E) Optimize the Geometry: 

Optimize the geometry of the receptor, especially the side chains in the binding site, to relieve any steric clashes and 

ensure a realistic conformation. 

F) Define the Binding Site: 

Identify and define the binding site or active site. This can be based on the known binding location of co-crystallized 

ligands or predicted using binding site prediction tools. 

G) Energy Minimization: 

Perform an energy minimization of the receptor structure to relax the conformation and eliminate any residual strain 

or unrealistic geometries introduced during preparation steps.70 

3.1.4 Validate the Prepared Structure: 

Validate the prepared structure by checking for proper geometry, bond lengths, bond angles and overall structural integrity 

using validation tools.71 

3.1.5 Tools and Software 

• Molecular Visualization: PyMOL, Chimera 

• Preparation and Optimization: AutoDockTools, Maestro (Schrödinger), MOE (Chemical Computing Group) 

• Homology Modeling: SWISS-MODEL, Modeller 

• Charge Assignment: AMBER, CHARMM, GROMACS 
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By carefully retrieving and preparing the target receptor structure, you ensure a robust foundation for subsequent docking 

studies, leading to more accurate and reliable predictions of ligand binding 

3.2 Retrieval and preparation of target ligand structure:  

Ligands can be obtained from various databases like ZINC or PubChem. The retrieval and preparation of the ligand structure 

are essential steps in molecular docking, as the ligand's quality affects the docking accuracy and the predicted binding mode.72 

3.2.1 Retrieval of Target Ligand Structure 

A) Identify the Ligand: 

Determine the small molecule or ligand of interest that will be docked to the receptor. 

B) Access Structural Databases: 

Retrieve the 3D structure of the ligand from chemical databases such as: 

PubChem (https://pubchem.ncbi.nlm.nih.gov/) 

ChEMBL (https://www.ebi.ac.uk/chembl/) 

ZINC (http://zinc.docking.org/) 

DrugBank (https://www.drugbank.ca/) 

C) Input Ligand Information:  

If the ligand is not available in these databases, draw the chemical structure using molecular drawing tools like 

ChemDraw or MarvinSketch, and generate a 3D model using conversion tools. 

3.2.2 Preparation of Target Ligand Structure: 

A) Generate the 3D Structure: 

If starting from a 2D structure, use tools like Open Babel or the ligand preparation functionalities in software like 

Maestro (Schrödinger) or MOE to convert the 2D structure to a 3D conformation. 

B) Assign Proper Protonation States: 

Determine and assign the correct protonation state of the ligand, considering the pH of the biological environment. 

Tools like Epik (Schrödinger) or Protonate3D (MOE) can predict the most likely protonation states. 

C) Add Hydrogen Atoms: 

Add all hydrogen atoms to the ligand, including polar hydrogens. This step is crucial for accurate interaction 

predictions. 

D) Assign Partial Atomic Charges: 

Assign appropriate partial atomic charges to the ligand atoms. This can be done using quantum chemistry methods 

(e.g., AM1-BCC in Antechamber) or force field-based methods (e.g., Gasteiger charges). 

E) Energy Minimization: 

Perform an energy minimization of the ligand to optimize its geometry. This step helps in relieving any steric clashes 

and ensures a stable conformation. Software like Avogadro, MMFF94 force field in Open Babel, or the minimization 

tools in Maestro or MOE can be used. 

F) Generate Multiple Conformations (Optional): 

To account for ligand flexibility, generate multiple conformations or tautomers of the ligand using tools like Omega 

(OpenEye) or LigPrep (Schrödinger).73 

3.2.3 Validate the Ligand Structure: 

Verify the prepared ligand structure by checking for correct geometry, bond lengths, bond angles and the absence of any 

unrealistic features. 

3.2.4 Tools and Software 

• Molecular Drawing: ChemDraw, MarvinSketch 

• 3D Structure Generation: Open Babel, Avogadro 
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Protonation State Prediction: Epik (Schrödinger), Protonate3D (MOE) 

Charge Assignment: Antechamber (AMBER), Gasteiger charges 

Energy Minimization: Avogadro, MMFF94 in Open Babel, Maestro (Schrödinger), MOE 

Conformation Generation: Omega (OpenEye), LigPrep (Schrödinger)  

3.3 Docking:  

The ligand is docked onto the receptors and the interactions are checked in available docking tools like AutoDock, SwissDock, 

GOLD, Sanjeevini, etc. 

IV. PHYSICOCHEMICAL PROPERTIES PREDICTION:  

In molecular docking, predicting the physicochemical properties of ligands and receptors is crucial for understanding their 

behavior in biological systems and optimizing ligand binding. These properties provide insights into the ligand’s potential 

bioavailability, stability and interaction profiles. Here are the key physicochemical properties considered in molecular docking 

and how they are predicted: 

4.1 Molecular Weight (MW) 

Importance: Influences the ligand’s ability to permeate cell membranes and its overall drug-likeness. 

Prediction: Calculated as the sum of the atomic weights of all atoms in the molecule. Tools like ChemDraw, Open Babel, and 

various cheminformatics software can compute MW easily.74 

4.2 LogP (Partition Coefficient) 

Importance: Indicates the lipophilicity of a compound, affecting its solubility and permeability. 

Prediction: Calculated using software like ChemDraw, ALOGPS, and MarvinSketch. It estimates the ratio of concentrations of 

a compound in a mixture of two immiscible solvents (usually octanol and water).75 

4.3 Topological Polar Surface Area (TPSA) 

Importance: Correlates with the drug's ability to be absorbed by the human body, including oral bioavailability and blood-brain 

barrier penetration. 

Prediction: Calculated based on the surface areas of polar atoms (usually oxygen and nitrogen) using tools like ChemAxon, 

SwissADME, and RDKit.76 

4.4 Hydrogen Bond Donors and Acceptors 

Importance: Essential for predicting the interaction strength between the ligand and the receptor. 

Prediction: Counted directly from the molecular structure. Software like MarvinSketch and Open Babel can provide these 

counts.77 

4.5 Rotatable Bonds 

Importance: Affects the molecule's flexibility and conformational entropy, influencing binding affinity and specificity. 

Prediction: Calculated by identifying the number of single non-ring bonds attached to non-terminal heavy atoms. Tools like 

RDKit and ChemAxon provide this information. 

4.6 Molecular Volume and Surface Area 

Importance: Relevant for understanding steric interactions within the binding site and predicting pharmacokinetic properties. 

Prediction: Tools like PyMOL, Chimera, and molecular modeling software can calculate these parameters using 3D structures. 

4.7 pKa (Acid Dissociation Constant) 

Importance: Influences the ionization state of a molecule at a given pH, affecting solubility, permeability, and binding 

interactions. 

Prediction: Estimated using cheminformatics tools like MarvinSketch and ACD/Labs, which provide pKa values for different 

ionizable groups in the molecule.78 
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4.8 Electrostatic Properties 

Importance: Determines the strength and orientation of electrostatic interactions between the ligand and the receptor. 

Prediction: Calculated using quantum mechanical methods (e.g., Gaussian) or empirical methods (e.g., AM1-BCC, Gasteiger 

charges). Tools like AutodockTools can assign partial charges to atoms.  

4.9 Solubility (LogS) 

Importance: Affects the compound’s bioavailability and formulation. 

Prediction: Estimated using QSAR models and software like ChemAxon and ADMET Predictor.79 

4.10 Bioavailability and Drug-likeness 

Importance: Overall assessment of the compound’s potential as a drug based on multiple physicochemical properties. 

Prediction: Tools like SwissADME, MolSoft, and Lipinski's Rule of Five check compliance with key drug-likeness criteria. 

4.11 Tools and Software for Physicochemical Properties Prediction 

• ChemDraw: For drawing chemical structures and calculating basic properties like MW, LogP, and hydrogen 

bond donors/acceptors. 

• MarvinSketch: Comprehensive tool for calculating pKa, LogP, TPSA, and other properties. 

• SwissADME: Web-based tool that provides extensive ADME (absorption, distribution, metabolism, and 

excretion) predictions, including physicochemical properties. 

• RDKit: Open-source cheminformatics toolkit for Python that can calculate various molecular descriptors. 

• PyMOL and Chimera: Molecular visualization tools that can also calculate surface area and volume. 

• ADMET Predictor: For predicting ADMET (absorption, distribution, metabolism, excretion, and toxicity) 

properties, including solubility and bioavailability. 

• Open Babel: Open-source tool for converting chemical file formats and calculating basic properties. 

• ACD/Labs: Comprehensive suite for predicting a wide range of physicochemical properties including pKa and 

solubility 

A) Scoring function: The scoring function's goal is to quickly distinguish between correct and incorrect poses, or 

between binders and inactive substances. Scoring functions, on the other hand, require making several assumptions 

and simplifications while predicting the binding affinity between the ligand and protein rather than computing it. There 

are three types of scoring functions: force-field-based, empirical-based, knowledge-based and consensus scoring.80 

B) Force Field-Based Scoring Functions: These estimate the binding energy of a protein-ligand complex by summing 

contributions from bond terms (bond stretching, angular bending, and dihedral changes) and non-bond terms 

(electrostatic and van der Waals forces). The calculations rely on classical mechanics equations to determine the 

energy associated with each term. A major limitation is that they do not account for solvation effects, where polar 

groups prefer aqueous environments and non-polar groups prefer non-aqueous environments.81 

C) Empirical-Based Scoring Functions: These evaluate the binding energy of a protein-ligand complex by summing a 

set of weighted empirical energy terms, including van der Waals forces, hydrogen bond energy, electrostatic energy, 
entropy, desolvation, and hydrophobic forces. They are generally more computationally efficient compared to other 

scoring functions due to the simplicity of their energy terms.81 

D) Knowledge-Based Scoring Functions: These derive the binding energy of protein-ligand complexes by analyzing 

structural information from known protein-ligand complexes. Their main advantage is computational simplicity, 

which enhances the efficiency of screening large compound databases.81 

E) Consensus Scoring: This approach aims to improve scoring accuracy by combining multiple scoring functions to 

balance out the errors inherent in individual scoring methods. This trend has emerged due to the imperfections present 

in each type of scoring function.81 

F) Molecular dynamics simulations: Molecular dynamics (MD) simulations are integral to modern molecular docking 

studies, offering dynamic insights into ligand-receptor interactions that static docking alone cannot provide. MD 

simulations are widely used in conjunction with molecular docking to refine docking results, explore the flexibility of 

molecular systems, and gain deeper insights into the dynamic behavior of ligand-receptor interactions. 
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V. IMPORTANCE IN MOLECULAR DOCKING 

• Capturing Flexibility: MD simulations account for the flexibility of both ligands and receptors, overcoming the 

limitations of rigid-body docking. This results in more accurate predictions of binding modes and affinities.82 

• Refining Docking Results: MD simulations refine initial docking poses by allowing the system to relax and adopt more 

favorable conformations.83 

• Evaluating Stability: They help assess the stability of the ligand-receptor complex, identifying stable binding poses and 

providing insights into binding kinetics.84 

• Exploring Binding Pathways: MD simulations elucidate binding and unbinding pathways, crucial for designing better 

ligands.85 

5.1 Workflow: 

• Initial Docking: Perform molecular docking to generate initial ligand poses within the receptor’s binding site 

using software like AutoDock, AutoDock Vina, or Glide (Morris et al., 2009; Trott & Olson, 2010). 

• System Preparation: Select the best-scoring poses, solvate the system, add counter-ions, and perform energy 

minimization to remove steric clashes.86 

• Molecular Dynamics Simulation: Conduct MD simulations using GROMACS, AMBER, or CHARMM. 

Typical simulations include equilibration (NVT and NPT ensembles) followed by production runs to observe the 

system’s dynamics.87-88 Monitor key parameters such as RMSD, RMSF, hydrogen bonds, and interaction 

energies to assess complex stability.89  

• Post-Simulation Analysis: Analyze trajectories to evaluate the stability and behavior of the ligand-receptor 

complex, focusing on conformational changes, binding interactions, and complex stability.90 

 

FIGURE 4: The procedures that can be followed and the tools that can be used before, during and after 

protein-ligand molecular docking in drug design
91

 

5.2 Types of molecular docking 

(1) Rigid docking: It treats both the receptor and ligand molecules as conformationally rigid. It searches for rigid body 

transformations that best fit the ligand into the receptor.92 
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(2) Flexible docking: Flexible ligand docking treats the ligand as a conformationally flexible molecule, by searching over 

both ligand conformations and rigid body transformations to identify the best fit of the ligand in the receptor, which is 

treated as a rigid body.93 

 

5.3 Role of molecular docking in insect-pest management: 

In-silico molecular docking analysis of the fusion protein (Vip3Aa-Cry1Ac) against aminopeptidase-N (APN) and cadherin 

receptors of five Lepidopteran insects (Agrotis ipsilon, Helicoverpa armigera, Pectinophora gossypiella, Spodoptera exigua, 

and S. litura) revealed that the Ser290, Ser293, Leu337, Thr340, and Arg437 residues of the fusion protein are involved in the 

interaction with insect receptors. The H. armigera cadherin receptor, however, showed no interaction which might be due to 

either loss or burial of interactive residues. These findings revealed that the Vip3Aa-Cry1Ac fusion protein has a strong affinity 

against Lepidopteran insect receptors and hence has the potential to be an efficient broad-range insecticidal protein (Ahmad et 

al., 2015).94 The molecular docking of 30 polyphenolic compounds of Rosa canina L. against the acetylcholinesterase enzyme 

of the cereal pest Rhopalosiphum padi has highlighted seven important substances based on the binding energies, which were 

significantly lower than that of the commercial insecticide malathion. Seven components showed intense links with the catalytic 

site residues of the enzyme, indicating high inhibitory potential of R. canina's polyphenolic compounds against the R. padi 

(Benslama et al., 2021).95 Gurbuz-Colak (2023)96 screened 3,150 natural compounds against the ryanodine receptor of 

Diamondback moths. Of the 28 compounds selected based on binding energies (threshold of -6.0 kcal/mol) using AutoDock 

Vina, three natural compounds viz., dorsmanin B, chartaceone B, and 7-O-galloyltricetifavan, demonstrated as potential 

pesticide candidates against Diamondback moth. Rodrigues et al. (2021)97 develop computer-assisted predictions for 

Lamiaceae family compounds against Aphis gossypii and Drosophila melanogaster for their insecticidal activity. Structure 

analysis revealed ent-kaurane, kaurene and clerodane diterpenes as the most active, showing excellent results. They also found 

that the interactions formed by these compounds were more stable, or presented similar stability to the commercialized 

insecticides tested. Overall, they concluded that the compounds bistenuifolin L (1836) and bistenuifolin K (1931), were 

potentially active against A. gossypii enzymes; and salvisplendin C (1086) and salvixalapadiene (1195), are potentially active 

against D. melanogaster. They observed and highlight that the diterpenes bistenuifolin L (1836), bistenuifolin K (1931), 

salvisplendin C (1086) and salvixalapadiene (1195), present a high probability of activity and low toxicity against the species 

studied. Khanna et al. (2023)98 study in-silico docking to evaluate the interaction of various triterpenoids present in neem with 

the ecdysone receptor of two economically important lepidopteran pests viz., Helicoverpa armigera (HaEcR) and Plutella 

xylostella (PxEcR). Twenty triterpenoids were selected for the study, and their docking scores with HaEcR and PxEcR were 

calculated using the program AutoDock Vina. A commercially available DAH insecticide, tebufenozide, was used as a 

reference ligand. Out of the twenty triterpenoids used for the study, six and nine triterpenoids recorded binding energy lower 

than the reference ligand, tebufenozide, when docked with HaEcR and PxEcR, respectively. Four triterpenoids, viz., 

isomeldenin, azdiradione, 6-deacetylnimbinene, and nimocinol, docked effectively with the ecdysone receptor of both insect 

pests. Triterpenoids such as tirucallol, 3-tigloylazadirachtol and azadirone, although recorded binding energy lower than 

tebufenozide when docked with PxEcR. The lower binding energy of the lead compounds suggests their stable interaction with 
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the receptor molecule and their possible use as an ecdysone agonist or antagonist for effective insect control. Nakao et al. 

(2013)99 revealed effect of meta-diamide and NCAs (non-competitive antagonist) on mutant Drosophila RDL GABA receptors 

expressed in Drosophila Mel-2 cells. They observed NCAs had little or no inhibitory activity against at least one of the three 

mutant receptors (A2’ S, A2’ G, and A2’ N), which were reported to confer resistance to NCAs. In contrast, meta-diamide 7 

inhibited all three A2’ mutant receptors, at levels comparable to its activity with the wild-type receptor. Molecular modeling 

studies also suggested that the binding site of meta-diamides was different from those of NCAs. Meta-diamide insecticides are 

expected to be prominent insecticides effective against A2’ mutant RDL GABA receptors with a different mode of action. 

VI. CONCLUSION 

The problem of environmental and health toxicity of a large number of conventional chemical insecticides, besides uprising 

scenarios resistant insects to these chemicals are becoming increasingly ineffective for the control of crop pests, pushing 

researchers to a continuous search for new effective products. In-silico molecular docking in the realm of pesticide discovery 

is marking a significant departure from traditional methods. Through computational modeling and virtual screening, researchers 

can navigate the vast chemical space with unprecedented speed and precision, revolutionizing the way we identify and optimize 

pesticides. The paradigm shift towards in-silico approaches heralds a new era of efficiency and sustainability in agriculture. By 

harnessing the power of computational algorithms and molecular simulations, scientists can rapidly predict the binding affinity 

of pesticide compounds to target receptors, accelerating the drug discovery process manifold. This not only expedites the 

development of novel pesticides but also minimizes the reliance on resource-intensive laboratory experiments, reducing costs 

and environmental impact. 

TABLE 1 

SMALL MOLECULE DATABASES AND COMPOUND COLLECTIONS AVAILABLE FROM VENDORS OR 

INSTITUTIONS 

Database Type No. 

Compounds 
Website 

ZINC [100] Public 13 million http://zinc.docking.org 

ChemDB [101] Public 5 million http://cdb.ics.uci.edu 

eMolecules Commercial 7 million http://www.emolecules.com 

ChemSpider Public 26 million http://www.chemspider.com 

Pubchem Public 30 million http://pubchem.ncbi.nlm.nih.gov 

ChemBank [102] Public 1,2 million http://chembank.broadinstitute.org 

DrugBank [103, 

104] 
Public 

4,800 drugs; 

2,500 targets 
http://www.drugbank.ca 

NCI Open Database Public 265,000 http://cactus.nci.nih.gov/ncidb2.2/ 

Chimiothèque 

Nationale 
Commercial 48,370 http://chimiotheque-nationale.enscm.fr/?lang=fr 

Drug Discovery 

Center Collection 
Commercial 340,000 http://www.drugdiscovery.uc.edu/ 

ChEMBL [105] Public 1 million http://www.ebi.ac.uk/chembldb/index.php 

WOMBAT [106] Commercial 263,000 http://www.sunsetmolecular.com 

ChemBridge Commercial 700,000 http://www.chembridge.com 

Specs Commercial 240,000 http://www.specs.net 

CoCoCo [107] Public 7 million http://cococo.unimore.it/tiki-index.php 

Asinex Commercial 550,000 http://www.asinex.com 

Enamine Commercial 1,7 million http://www.enammine.net 

Maybridge Commercial 56,000 http://www.maybridge.com 

ChemDiv Commercial 1,5 million http://www.chemdiv.com 

ACD Commercial 3,9 million 
http://accelrys.com/products/databases/sourcing/avaible-

chemicalsdirectory.html 

MDDR Commercial 150,000 http://accelerys.com/products/databases/bioactivity/mddr.html  

http://zinc.docking.org/
http://cdb.ics.uci.edu/
http://www.emolecules.com/
http://www.chemspider.com/
http://pubchem.ncbi.nlm.nih.gov/
http://chembank.broadinstitute.org/
http://www.drugbank.ca/
http://cactus.nci.nih.gov/ncidb2.2/
http://chimiotheque-nationale.enscm.fr/?lang=fr
http://www.drugdiscovery.uc.edu/
http://www.ebi.ac.uk/chembldb/index.php
http://www.sunsetmolecular.com/
http://www.chembridge.com/
http://www.specs.net/
http://cococo.unimore.it/tiki-index.php
http://www.asinex.com/
http://www.enammine.net/
http://www.maybridge.com/
http://www.chemdiv.com/
http://accelrys.com/products/databases/sourcing/avaible-chemicalsdirectory.html
http://accelrys.com/products/databases/sourcing/avaible-chemicalsdirectory.html
http://accelerys.com/products/databases/bioactivity/mddr.html
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TABLE 2 

EXAMPLE OF COMMONLY USED DOCKING SOFTWARE 

Software  Free for Academia  Website  

AUTODOCK [109]  Yes  http://autodock.scripps.edu/  

DOCK [110]  Yes  http://dock.compbio.ucsf.edu/  

FlexX [111]  No  http://www.biosolveit.de/flexx/  

GLIDE [112]  No  http://www.schrodinger.com/  

GOLD [113]  No  http://www.ccdc.cam.ac.uk/products/life_sciences/gold/  

EADock [114]  No  http://lausanne.isb-sib.ch/~agrosdid/projects/eadock/eadock_dss.php  

 

TABLE 3 

TARGETED SMALL MOLECULES DATABASES FROM COMMERCIAL VENDORS 

Company Library Name Link Address 

Asinex  Antibacterials  http://www.asinex.com  

SPECS  Kinase-targeted Library  http://www.specs.net/  

Timtec  

GPCR Ligands  

http://www.timtec.net  

Kinase Modulators  

Protease Inhibitors  

Potassium Channels Modulators  

Nuclear Receptors Ligands  

ChemBridge  

Kinase-Biased Sets  

http://www.chembridge.com  GPCR Library  

Channel-Biased Sets  

ChemDiv  
GPCRs  

http://www.chemdiv.com/main.phtml  

Kinases  

InterBioScreen  

IBS High-Hit Databases  

http://www.ibscreen.com  

Analgesics  

Antibacterials  

Antidiabetics  

Cancerostatics  

Cns regulators  

MayBridge    http://www.maybridge.com  

Key Organics  

Bionet  

http://www.keyorganics.ltd.uk  

Antimalarial Agents  

Active Compounds for Cancer Research  

Active Compounds for CNS Research  

Life Chemicals  

GPCR Library  

http://lifechemicals.emolecules.com/  Kinase Library  

Anticancer Library  

 

http://autodock.scripps.edu/
http://dock.compbio.ucsf.edu/
http://www.biosolveit.de/flexx/
http://www.schrodinger.com/
http://www.ccdc.cam.ac.uk/products/life_sciences/gold/
http://lausanne.isb-sib.ch/~agrosdid/projects/eadock/eadock_dss.php
http://www.asinex.com/
http://www.specs.net/
http://www.timtec.net/
http://www.chembridge.com/
http://www.chemdiv.com/main.phtml
http://www.ibscreen.com/
http://www.maybridge.com/
http://www.keyorganics.ltd.uk/
http://lifechemicals.emolecules.com/


International Journal of Environmental & Agriculture Research (IJOEAR)                  ISSN:[2454-1850]               [Vol-10, Issue-8, August- 2024] 

Page | 13  

TABLE 4 

EXAMPLE OF COMMONLY USED DOCKING SOFTWARE 

Software  Free for Academia  Website  

Surflex [115]  No  http://www.tripos.com/index.php  

ICM [116]  No  http://www.molsoft.com/docking.html  

LigandFit [117]  No  http://accelrys.com/products/discovery-studio  

eHiTS [118]  No  http://www.simbiosys.ca/ehits/index.html  

SLIDE [119]  Yes on demand  http://www.bch.msu.edu/~kuhn/software/slide/index.html  

ROSETTA_DOCK [120]  Yes on demand  http://rosettadock.graylab.jhu.edu/  

Virtual Docker [111]  No  http://www.molegro.com/mvd-product.php  

Ligand-Receptor Docking [112]  No  http://www.chemcomp.com/software-sbd.htm  

FRED [113]  Yes on demand  http://www.eyesopen.com/oedocking  

ZDOCK [114]  Yes  http://zlab.umassmed.edu/zdock/  

 

TABLE 5 

DOCKING PROGRAMS THAT INCLUDE PROTEIN FLEXIBILITY  

Program and Ref.  Ligand Flexibility  Protein Flexibility  Scoring function  

AUTODOCK4 
[109]  

Evolutionary algorithm  Flexible side chain  Force field  

DOCK [110]  Incremental build  
Protein side chain and 

flexibility  

Force field or contact 

score  

GOLD [113]  Evolutionary algorithm  
Protein side chain and 
backbone flexibility  

Empirical score  

EADock [114]  Evolutionary algorithm  
Flexible side chain and 

backbone  
Force field  

ICM, IFREDA 

[116]  

Pseudo-Brownian sampling and local 

minimization  
Flexible side chains  

Force field and Empirical 

score  

FlexE [124]  Incremental build  Ensemble of protein structure  Empirical score  

GLIDE Induced Fit 
[125]  

Exhaustive search  Flexible side chains  Empirical score  
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