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Abstract— Soils are an important component of the critical zone and a finite resource. Mapping and monitoring these 

resources in the field, regional, and global stages is crucial for better management and prevention of degradation. Remote 

sensing (RS) techniques provide several advantages over conventional approaches for evaluating soil parameters, including 

large-scale coverage, non-destructive nature, temporal monitoring, multispectral capabilities, and rapid data collecting. Aside 

from laboratory circumstances, Sentinel satellite data has been used to estimate various soil parameters in a variety of 

applications. This review highlights research on soil properties estimation using sentinel data, including methodology and 

outcomes for each study. Various soil properties like Soil Texture, Soil Salinity, Soil Texture, Soil Organic Carbon estimated 

using sentinel data.  
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I. INTRODUCTION 

Accurate information, needed to managing the variability in soil properties, is an important aspect in the implementation of 

site-specific farming also known as precision agriculture (PA) (Jarosalv et al., 2018). In agricultural fields, soil properties often 

show relevant spatial variations (Yuzugullu et al., 2020) due to several factors, e.g., parent material, geomorphology, previous 

use, and management. The primary method for the characterization of soil involves manually collecting soil samples, drying 

them, and subsequently performing chemical analyses in a laboratory setting (Toth et al., 2013). However, the manual 

collection of soil samples, along with their corresponding physicochemical characterization, is a time-consuming process that 

lacks scalability for extensive areas (Wang et al., 2014). Different soil properties interact with electromagnetic radiation in 

diverse ways. As electromagnetic waves strike the Earth’s surface, they can be absorbed, transmitted, or reflected. The 

reflection and absorption patterns at different wavelengths provide insights into the composition, structure, and properties of 

the observed materials (Barnes et al., 2000). More recently, hyperspectral, and multispectral soil characterization has emerged 

as a highly valuable tool for the estimation of soil properties without the need for chemical analyses of the soil samples 

(Lagacherie et al., 2008 and Helfer et al., 2021). Another approach is given by multispectral satellite sensors. Since 1972, 

Landsat satellites gather images that can be useful in environmental studies. For example, sensor thematic mapper (TM) on-

board Landsat 5 was used to detect bare soil (Dematte et al. 2009). In 2015, the European Space Agency (ESA) begin to deliver 

free of cost, good spatial resolution (10 m) Earth images. Sensors on-board optical Sentinel-2 satellites are equipped with 12 

spectral bands, which can be useful for soil properties mapping. The usefulness of the acquired image data largely depends on 

the way it is processed and analysed. Many statistical methods are used to obtain reliable soil information from multispectral 

images, such as multiple linear regression (MLR) analysis, principal component regression (PCR) and partial least squares 

(PLS) regression. Application of the latter method to hyperspectral data allows to determine several soil parameters with high 

values of correlation coefficient and low errors, including grain size composition, pH, cation exchange capacity (CEC) or some 

chemical elements (Mammadov et al. 2020, Vestergaard et al. 2021). Recently, machine learning algorithms based on random 
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forests and Cubist development models have been used to study the relationship between spectral data and soil characteristics. 

The Cubist model is often used to estimate SOC; in such cases, it is also advisable to use spectral indices as variables in addition 

to raw reflectance (Peng et al. 2015). More precisely, which soil parameters, with what method of data analysis and with what 

accuracy, can be estimated based on satellite data. 

II. A REVIEW ON VARIOUS SOIL PROPERTIES ESTIMATION USING SENTINEL SATELLITE IMAGES 

2.1 Soil Moisture: 

Qi et al used use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. This paper presents two 

methodologies for the retrieval of soil moisture from remotely-sensed SAR images, with a spatial resolution of 100 m. These 

algorithms are based on the interpretation of Sentinel-1 data recorded in the VV polarization, which is combined with Sentinel-

2 optical data for the analysis of vegetation effects over a site in Urgell (Catalunya, Spain). The first algorithm has already 

been applied to observations in West Africa by Zribi et al., 2008, using low spatial resolution ERS scatterometer data, and is 

based on change detection approach. In the present study, this approach is applied to Sentinel-1 data and optimizes the inversion 

process by taking advantage of the high repeat frequency of the Sentinel observations. The second algorithm relies on a new 

method, based on the difference between backscattered Sentinel-1 radar signals observed on two consecutive days, expressed 

as a function of NDVI optical index. Both methods are applied to almost 1.5 years of satellite data (July 2015–November 

2016), and are validated using field data acquired at a study site. This leads to an RMS error in volumetric moisture of 

approximately 0.087 m3/m3 and 0.059 m3/m3 for the first and second methods, respectively. No site calibrations are needed 

with these techniques, and they can be applied to any vegetation-covered area for which time series of SAR data have been 

recorded. 

Paloscia et al studied soil moisture mapping using Sentinel-1 images. The main objective of this research is to develop, test and 

validate a soil moisture content (SMC) algorithm for GMES Sentinel-1 characteristics. The SMC product, which is to be 

generated from Sentinel-1 data, requires an algorithm capable of processing operationally in near-real-time and delivering the 

product to the GMES services within 3 h from observation. An approach based on an Artificial Neural Network (ANN) has been 

proposed that represents a good compromise between retrieval accuracy and processing time, thus enabling compliance with the 

timeliness requirements. The algorithm has been tested and subsequently validated in several test areas in Italy, Australia, and 

Spain. In all cases the validation results were very much in line with GMES requirements (with RMSE generally 4%SMC – 

between 1.67% SMC and 6.68% SMC – and very low bias), except for the case of the test area in Spain, where the validation 

results were penalized by the availability of only VV polarized SAR images and MODIS low-resolution NDVI. Nonetheless, 

the obtained RMSE was slightly higher than 4%SMC. 

Figure 1 Histogram of the comparison between the ANN-estimated and the ground measured SMC over the Cordevole area. 

SMC was subdivided into 4 classes between 25% and 45%. Two ANNs were considered: one used only VV polarized data, 

and the other one also used the NDVI information. 

 

FIGURE 1: Histogram of SMC Comparison Between ANN-Estimated and Ground Measured Values 

Table 1 Validation results, obtained over the test site in Spain, by considering (a) or disregarding (b) NDVI information. In 

grey, the couples of values SMC estimated/SMC measured, for which the NDVI information worsened the results, have been 

singled out. 
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TABLE 1 

VALIDATION RESULTS FOR ANN-ESTIMATED SMC WITH AND WITHOUT NDVI INFORMATION 

Part A 

Acquisition date SMC ANN (%) SMC ground (%) RMSE (%) St. Dev. (%) 

10 May, 2010 16.11 24.05 5.34 3.45 

14 June, 2010 12.66 14.35 3.52 2.66 

23 August, 2010 10.18 7.86 3.41 2.19 

27 September, 2010 17.19 14.99 6.38 4.76 

25 February, 2011 13.74 21.41 4.58 0.69 

22 June, 2011 11.58 10.85 4.35 3.44 

Mean     4.6 2.87 

Part B 

10 May, 2010 20.06 24.05 2.72 0.97 

14 June, 2010 16.37 14.34 4.01 2.69 

23 August, 2010 16.65 7.85 8.5 2.9 

27 September, 2010 17.92 14.99 5.12 3.23 

25 February, 2011 20.31 21.4 2.31 0.58 

22 June, 2011 16.39 10.85 5.21 1.71 

Mean     4.64 2.01 

 

Natalia et conducted study on soil moisture estimation using Sentinel-1/-2 Imagery coupled with cycleGAN for Time-series 

Gap Filing This study aimed to explore the possibility of taking advantage of freely available Sentinel-1 (S1) and Sentinel-2 

(S2) EO data for the simultaneous prediction of SMC with cycle-consistent adversarial network (cycleGAN) for time-series 

gap filling. The proposed methodology, first, learns latent low-dimensional representation of the satellite images, then learns a 

simple machine learning model on top of these representations. To evaluate the methodology, a series of vineyards, located in 

South Australia’s Eden valley are chosen. Specifically, we presented an efficient framework for extracting latent features from 

S1 and S2 imagery. They showed how one could use S1 to S2 feature translation based on Cycle-GAN using S1and S2 time 

series when there are missing images acquired over an area of interest. The resulting data in our study is then used to fill gaps 

in time series data. We used the resulting latent representations to predict SMC with various ML tools. In the experiments, 

cycleGAN and the autoencoders were trained with data randomly chosen around the site of interest, so we could augment the 

existing dataset. The best performance was demonstrated with random forest algorithm, whereas linear regression model 

demonstrated significant overfitting. The experiments demonstrate that the proposed methodology outperforms the compared 

state-of-the-art methods if there are missing optical and synthetic-aperture radar (SAR) images. 

Figure 2 Proposed architecture relies on building a latent representation of each domain (S1 and S2) based on autoencoders and 

then predicting Soil Moisture (through an additional prediction model) based on these representations. A cycleGAN is also 

trained to recover missing data from S1 to S2 and vice-versa. 

 

FIGURE 2: Proposed Architecture for Cross-Domain Soil Moisture Prediction 
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Sutariya et al presents the potential for soil moisture (SM) retrieval using Sentinel-1 C-band Synthetic Aperture Radar (SAR) 

data acquired in Interferometric Wide Swath (IW) mode along with Land Surface Temperature (LST) estimated from analysis 

of LANDSAT-8 digital thermal data. In this study Sentinel-1 data acquired on 27 February 2020 was downloaded from 

Copernicus website and LANDSAT-8 OLI data acquired on 24 February 2020 from the website 

https://earthexplorer.usgs.gov/.The soil samples were collected from 70 test fields in different villages of three talukas for 

estimating soil moisture content using the gravimetric method. The Sentinel-1 SAR microwave data was analysed using open-

source tools of Sentinel Application Platform (SNAP) software for estimation of backscattering coefficient. Land surface 

temperature estimated using Landsat-8 thermal data. The Landsat8, Thermal infrared sensor Band-10 data and operational land 

imager Band-4 and Band-5 data were used in estimating LST. The Soil Moisture Index (SMI) for all field test sites was 

computed using the LST values. The regression analysis using σ0VV and σ0VH polarization with soil moisture indicated that 

σ0VV polarization was more sensitive to soil moisture content as compared to σ0VH polarization. The multiple regression 

analysis using field measured soil moisture (MS %) as dependent variable, and σ0VV and SMI as independent variable was 

carried which resulted in the coefficient of determination (R2) of 0.788, 0.777 and 0.778 for Godhra, Gogh amba and Kalol 

talukas, respectively. These linear regression equations were used to compute the predicted soil moisture in three talukas. 

Esmaeili et al estimated of soil moisture using sentinel-1 and sentinel-2 images. For this study, soil moisture was sampled at 

24 points in the common area of the two images in the south of Malard city, Tehran province (Iran) was obtained by survey. 

After pre-processing the images, the values of bands 1 to 7, 11, and 12 of the Sentinel-2 and applying filters (Gaussian, 

Laplacian, Majority, Morphology, and rank) to the Sentinel-1 soil moisture were calculated. Moreover, R, R2, and RMSE were 

calculated using soil moisture obtained from sample points. Furthermore, Maps of data used by sentinel-1 and sentinel-2 images 

were obtained. Using maps of data shows the potential of applied filters to sentinel-1 and bands used for sentinel-2 in the 

estimation of soil moisture. According to the results, the highest coefficient of determination (R2) for the Sentinel-2 is related 

to band 6 with 84%. The result of Sentinel-1 demonstrated that the highest coefficient of determination was related to the Rank 

filter (54%). The highest correlation of the Sentinel-2 and the Sentinel-1 is related to band 6 with 74% and the Rank filter with 

46%, respectively. The lowest RMSE in Sentinel-2 and Sentinel-1 is related to band three (1.64 %) and rank filter (1.03 %), 

respectively. According to the obtained results, band 6 in the Sentinel-2 and filter in Sentinel-1 have better performance among 

the data and methods used. However, it is emphasized that using more samples can be tested for improving results. 

TABLE 2 

CORRELATION AND RMSE RESULTS BETWEEN INPUT DATA AND SOIL MOISTURE 

Data RMSE R Soil Moisture Values (% ) 

B1 11.42 0.13 8.7 

B2 3.68 0.2 8.09 

B3 1.64 0.306 7.93 

B4 6.16 0.315 8.29 

B5 4.5 0.67 8.16 

B6 3.68 0.74 8.097 

B7 3.67 0.369 8.096 

B8 2.26 0.415 7.98 

B11 4.4 0.16 8.15 

B12 4.88 0.19 8.19 

Sentinel-1 4.92 0.18 8.19 

Gaussian 11.34 0.15 8.69 

Laplacian 14.29 0.068 8.92 

Major 2.36 0.069 7.99 

Rank 1.03 0.46 7.89 

Morphology 6.67 0.13 8.33 
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2.2 Soil Organic Carbon and Soil Organic Matter: 

Castaldi et al assessed the capability of Sentinel-2 time-series to estimate soil organic carbon and clay content at local scale in 

croplands. This work is focused on the feasibility of Sentinel-2 based approaches for the high-resolution mapping of topsoil 

clay and organic carbon (SOC) contents at the within-farm or within-field scales, for cropland sites of contrasted climates and 

soil types across the Northern hemisphere. Four pixelwise temporal mosaicking methods, using a two years-Sentinel-2 time 

series and several spectral indices (NDVI, NBR2, BSI, S2WI), were developed and compared for i) pure bare soil condition 

(maxBSI), ii) driest soil condition (minS2WI), iii) average bare soil condition (Median) and iv) dry soil conditions excluding 

extreme reflectance values (R90). Three spectral modelling approaches, using the Sentinel-2 bands of the output temporal 

mosaics as covariates, were tested, and compared: (i) Quantile Regression Forest (QRF) algorithm; (ii) QRF adding longitude 

and latitude as covariates (QRFxy); (iii) a hybrid approach, Linear Mixed Effect Model (LMEM), that includes spatial 

autocorrelation of the soil properties. We tested pairs of mosaic and spectral approaches on ten sites in Türkiye, Italy, Lithuania, 

and USA where soil samples were collected and SOC and clay content were measured in the lab. The average RPIQ of the best 

performances among the test sites was 2.50 both for SOC (RMSE = 0.15%) and clay (RMSE = 3.3%). Both accuracy level and 

uncertainty were mainly influenced by site characteristics of cloud frequency, soil types and management. Generally, the 

models including a spatial component (QRFxy and LMEM) were the best performing, while the best spatial mosaicking 

approaches mostly were Median and R90. The most frequent optimal combination of mosaicking and model type was Median 

or R90 and QRFxy for SOC, and R90 and LMEM for clay estimation. 

TABLE 3 

FREQUENCY OF ACCURACY VALUES HIGHER THAN 90% FOR SOC ESTIMATION AMONG THE TEN TEST SITES 

ACCORDING TO SYNTHETIC BARE SOIL IMAGES METHOD (SBSI) AND PREDICTION MODELS. 

  maxBSI minS2WI Median R90 Mean frequency 

QRF 10% 50% 40% 50% 37.50% 

QRFxy 40% 50% 60% 60% 52.50% 

LMM 30% 40% 30% 50% 37.50% 

Mean frequency 26.70% 46.70% 43.30% 53.30%   

 

Castaldi et al investigated soil organic carbon mapping using LUCAS Topsoil database and Sentinel-2 Data: An approach to 

reduce soil moisture and crop residue effects. In this regard, the high temporal, spatial, and spectral resolution of the Sentinel-

2 data can be exploited for monitoring SOC contents in the topsoil of croplands. In this study, we aim to test the effect of the 

threshold for a spectral index linked to soil moisture and crop residues on the performance of SOC prediction models using the 

Multi-Spectral Instrument (MSI) Sentinel-2 and the European Land Use/cover Area frame Statistical survey (LUCAS) topsoil 

database. The LUCAS spectral data resampled according to MSI/Sentinel-2 bands, which were used to build SOC prediction 

models combining pairs of the bands. The SOC models were applied to a Sentinel-2 image acquired in North-Eastern Germany 

after removing the pixels characterized by clouds and green vegetation. Then, we tested different thresholds of the Normalized 

Burn Ratio 2 (NBR2) index in order to mask moist soil pixels and those with dry vegetation and crop residues. The model 

accuracy was tested on an independent validation database and the best ratio of performance to deviation (RPD) was obtained 

using the average between bands B6 and B5 (Red-Edge Carbon Index: RE-CI) (RPD: 4.4) and between B4 and B5 (Red-Red-

Edge Carbon Index: RRE-CI) (RPD: 2.9) for a very low NBR2 threshold (0.05). Employing a higher NBR2 tolerance (higher 

NBR2 values), the mapped area increases to the detriment of the validation accuracy. The proposed approach allowed us to 

accurately map SOC over a large area exploiting the LUCAS spectral library and, thus, avoid a new ad hoc field campaign. 

Moreover, the threshold for selecting the bare soil pixels can be tuned, according to the goal of the survey. The quality of the 

SOC map for each tolerance level can be judged based on the figures of merit of the model. 

Madugundu et al studied estimation soil organic carbon in agricultural fields: A remote sensing approach. Landsat-8 (L8) and 

Sentinel-2 (S2A) satellite images were used for the characterization of SOC stocks in the topsoil layer (0-10 cm) of the 

experimental fields. Soil samples were randomly collected from six (50 ha each) agricultural fields and analysed in the 

laboratory for SOC (SOC) following Walkley and Black A method. While, vegetation indices (VI), such as the Normalized 

Difference Vegetation Index (NDVI), NDVIRedEdge, Enhanced Vegetation Index (EVI), Bare Soil Index (BSI), and Reduced 

Simple Ratio (RSR) were computed and subsequently used for the development of SOC prediction models. Univariate linear 

regression technique was employed for the recognition of a suitable band/VI for SOC (SOC) mapping. The SWIR-1 P2 band 

of both L8 (R2 = 0.86) and S2A (R=0.77) data was promising for predicting SOC with 16% (S2A) and 18% (L8) of BIAS. 
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Xinxin et al estimated soil organic matter content using sentinel-2 imagery by machine learning in Shanghai. This article aimed 

to evaluate the capacity of Sentinel-2 for SOM prediction in an urban area (i.e., Shanghai). 103 bare soil samples filtrated from 

398 soil samples at a depth of 20 cm were selected. Three methods, partial least square regression (PLSR), artificial neural 

network (ANN), and support vector machine (SVM), were applied. The root mean square error (RMSE) of modelling 

(mRMSE) and the coefficient of determination (R2) of modelling (mR2) were used to reflect the accuracy of the model. The 

results show that PLSR has the poorest performance. ANN has the highest modelling accuracy (mRMSE = 7.387 g kg−1, mR2 

= 0.446). The ANN prediction accuracy of RMSE (pRMSE) is 4.713 g kg−1 and the prediction accuracy of R 2 (pR2) is 0.723. 

For SVR, the pRMSE is 4.638 g kg−1, and the pR2 is 0.732. The prediction accuracy of SVR is slightly higher than that of 

ANN. The spatial distribution of SOM demonstrates that the value obtained by ANN is the closest to the range of the bare soil 

samples, and ANN performs better in vegetation-covered areas. Therefore, Sentinel-2 can be used to estimate SOM content in 

urban areas, and ANN is a promising method for SOM estimation. 

TABLE 4 

ACCURACY EVALUATION OF MODEL AND PREDICTION ACCURACY 

Method 
Modelling Accuracy Prediction Accuracy 

mR2 mRMSE pR2 pRMSE 

ANN 0.446 7.387 0.723 4.713 

SVR 0.256 8.556 0.732 4.638 

PLSR 0.155 9.12 0.349 7.224 

 

Klara et al presented study on have collected 303 photos of soil surfaces in the Belgian loam belt where five main classes of 

surface conditions were distinguished: smooth seeded soils, soil crusts, partial cover by a growing crop, moist soils, and crop 

residue cover. Reflectance spectra were then extracted from the Sentinel–2 images coinciding with the date of the photos. After 

the growing crop was removed by an NDVI < 0.25, the Normalized Burn Ratio (NBR2) was calculated to characterize the soil 

surface, and a threshold of NBR2 < 0.05 was found to be able to separate dry bare soils from soils in unfavourable conditions 

i.e. wet soils and soils covered by crop residues. Additionally, we found that normalizing the spectra (i.e. dividing the 

reflectance of each band by the mean reflectance of all spectral bands) allows for cancelling the albedo shift between soil crusts 

and smooth soils in seed–bed conditions. They then built the exposed soil composite from Sentinel–2 imagery for southern 

Belgium and part of Noord Holland and Flevoland in the Netherlands (covering the spring periods of 2016–2021). They used 

the mean spectra per pixel to predict SOC content by means of a Partial Least Squares Regression Model (PLSR) with 10–fold 

cross–validation. The uncertainty of the models was assessed via the prediction interval ratio (PIR). The cross validation of the 

model gave satisfactory results (mean of 100 bootstraps: model efficiency coefficient (MEC) = 0.48 ± 0.07, RMSE = 3.5 ± 0.3 

g C kg–1, RPD = 1.4 ± 0.1 and RPIQ = 1.9 ± 0.3). The resulting SOC prediction maps show that the uncertainty of prediction 

decreases when the number of scenes per pixel increases, and reaches a minimum when at least six scenes per pixel are used. 

The results of a validation against an independent data set showed a median difference between the measured (average SOC 

content 13.5 g C kg–1) and predicted SOC contents at field scale. Overall, this compositing method shows both realistic within 

field and regional SOC patterns. 

TABLE 5 

STATISTICS OF THE SOIL ORGANIC CARBON (SOC) CONTENT PREDICTION AND THE UNCERTAINTY (%) FOR 

THE PIXEL–BASED APPROACH AND FOR FIELD–BASED APPROACH. (SD = STANDARD DEVIATION) 

Approach N   Mean Median SD 

Per-Pixel 11, 235, 492 pixels 

SOC (g C kg–1) 14.1 13.3 4.7 

PIR (g C kg-1) Per–field 12.4 11.8 1.6 

Per-Field 

92, 451 fields SOC (g C kg–1) 13.6 12.7 3.2 

Validation (n=34 385 Residues (g C kg–1) 0.7 0.5 2.8 
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Chong et al mapped soil organic matter content using Sentinel-2 synthetic images at different time intervals in Northeast China. 

In this study, they processed all Sentinel-2 images covering the bare-soil period (March to June) in Northeast China from 2019 

to 2022 and integrated the observation results into synthetic materials with four defined time intervals (10, 15, 20, and 30 d). 

Then, they used synthetic images corresponding to different time periods to conduct SOM mapping and determine the optimal 

time interval and time period before finally assessing the impacts of adding environmental covariates. The results showed the 

following: (1) in SOM mapping, the highest accuracy was obtained using day-of-year (DOY) 120 to 140 synthetic images with 

20 d time intervals, as well as with different time intervals, ranked as follows: 20 d > 30 d > 15 d > 10 d; (2) when using 

synthetic images at different time intervals to predict SOM, the best time period for predicting SOM was always within May; 

and (3) adding environmental covariates effectively improved the SOM mapping performance, and the multiyear average 

temperature was the most important factor. In general, our results demonstrated the valuable potential of SOM mapping using 

multiyear synthetic imagery, thereby allowing detailed mapping of large areas of cultivated soil. 

TABLE 6 

SOC SAMPLE SET STATISTICS FOR EACH S2BSOIL USED FOR MODELLING 

SOC g.kg−1 

S2Bsoil Sites Minimum Q1 Median Mean Q3 Maximum SD Skewness Kurtosis 

S2Bsoil_0 353 3.46 11.4 13 13.4 15 27.8 3.3 0.86 4.83 

S2Bsoil_1 304 3.46 11.41 13 13.4 15 27.8 3.3 0.93 5.18 

S2Bsoil_2 350 3.46 11.39 13 13.4 15 27.8 3.3 0.85 4.82 

 

Urbina-Salazar et al analysed Sentinel-2 and Sentinel-1 bare soil temporal mosaics of 6-year periods for soil organic carbon 

content mapping in Central France. To generate a reliable SOC map, this study addresses the use of Sentinel-2 (S2) temporal 

mosaics of bare soil (S2Bsoil) over 6 years jointly with soil moisture products (SMPs) derived from Sentinel 1 and 2 images, 

SOC measurement data and other environmental covariates derived from digital elevation models, lithology maps and airborne 

gamma-ray data. In this study, we explore (i) the dates and periods that are preferable to construct temporal mosaics of bare 

soils while accounting for soil moisture and soil management; (ii) which set of covariates is more relevant to explain the SOC 

variability. From four sets of covariates, the best contributing set was selected, and the median SOC content along with 

uncertainty at 90% prediction intervals were mapped at a 25-m resolution from quantile regression forest models. The accuracy 

of predictions was assessed by 10-fold cross-validation, repeated five times. The models using all the covariates had the best 

model performance. Airborne gamma-ray thorium, slope and S2 bands (e.g., bands 6, 7, 8, 8a) and indices (e.g., calcareous 

sedimentary rocks, “calcl”) from the “late winter–spring” time series were the most important covariates in this model. Our 

results also indicated the important role of neighbouring topographic distances and oblique geographic coordinates between 

remote sensing data and parent material. These data contributed not only to optimizing SOC mapping performance but also 

provided information related to long-range gradients of SOC spatial variability, which makes sense from a pedological point 

of view. 

2.3 Soil Salinity: 

Meti et al carried-out sensitivity analysis for mapping of alkaline soil in Northern Dry Zone of Karnataka, India using Sentinel-

1 and Landsat-8 bands. This paper focuses on exploring the possibility of using new generation medium resolution Landsat-8 

and Sentinel-2 satellite data to map alkaline soils of Ramthal irrigation project area in north Karnataka. Surface soil salinity 

parameters of zone 20 were correlated with reflectance values of different band and band combination and traditional salinity 

indices and result has indicated that SWIR bands of both satellites showed significant negative correlation with soil pH, EC 

(r=-0.39 to - 0.45) whereas visible and NIR bands did not show significant relation. However, rationing of SWIR bands with 

visible blue band has significantly improved the correlation with soil pH and EC (r= +0.60 to +0.70). Traditional salinity index 

based on visible bands failed to show significant correlation with soil parameters. It is interesting to note that SWIR bands 

alone did not show significant correlation with soil sodicity parameters like exchangeable Na, SAR, RSC but band rationing 

with blue bands has significantly improved the correlation (r = 0.45). High resolution soil salinity map was prepared using 

simple linear regression model and using this map will serve as base map for the policy makers. 
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TABLE 7 

LINEAR REGRESSION MODELS FOR PREDICTING SOIL SALINITY PARAMETERS FROM SATELLITE BANDS 

REFLECTANCE 

Parameter Satellite Regression Model R2 RMSE 

pH 

Landsat 

8 
6.41+15.73(Aerosol/SWIR2) + 4.95(Green/NIR) -11.69 (Blue/SWIR1) 0.48 0.207 

Sentinel 

2 

7.17+8.72((Blue/SWIR2) +1.87(RedEdge2/RedEdge3)-5.44(SI7)-

1.0(Blue/RedEdge1) 
0.49 0.206 

EC 

Landsat 

8 

0.09+2.02(Aerosol/SWIR2) +0.67(Red/NIR)-7.35(Blue)-

0.34(Blue/Green) 
0.33 0.07 

Sentinel 

2 
0.17-0.94(SWIR2) +1.13(RedEdge1/SWIR1) +1.13(SI7) 0.3 0.07 

Sodium 

Landsat8 
-17.04+144.29(Aerosol/SWIR2) +45.66(Green/NIR)-

132.28(Blue/SWIR1) 
0.49 1.51 

Sentinel 

2 
-1.59-51.1(SWIR2) +36.39((Blue/SWIR1) +17.28(Green/NIR) 0.45 1.58 

 

Ghada investigated a PLSR model to predict soil salinity using Sentinel-2 MSI data. This study used spectral indices, including 

salinity and vegetation indices, Sentinel-2 MSI original bands, and DEM, to model soil salinity in the Great Hungarian Plain. 

Eighty-one soil samples in the upper 30 cm of the soil surface were collected from vegetated and non vegetated areas by the 

Research Institute for Soil Sciences and Agricultural Chemistry (RISSAC). The sampling campaign of salinity monitoring was 

performed in the dry season to enhance salt spectral characteristics during its accumulation in the subsoil. Hence, applying a 

partial least squares regression (PLSR) between salt content (g/kg) and remotely sensed data manifested a highly moderate 

correlation with a coefficient of determination R2 of 0.68, a p-value of 0.000017, and a root mean square error of 0.22. The 

final model can be deployed to highlight soil salinity levels in the study area and assist in understanding the efficacy of land 

management strategies. 

TABLE 8 

MULTIPLE LINEAR REGRESSION ANALYSIS – ECp VERSUS LABORATORY ANALYSED SOIL ECe 

    RMSE MBE 

Model R2 (dS m–1) (%) (dS m–1) (%) 

1 0.44* 1.09 14.34 1.25 –17.29 

2 0.54* 0.94 10.61 1.08 –14.22 

3 0.62* 0.86 10.02 0.92 6.66 

 

Khalid et al used Sentinel-2 images for effective mapping of soil salinity in agricultural fields. The present study was conducted 

to develop an effective soil salinity prediction model using Sentinel2A (S2) satellite data. Initially, the collected soil samples 

were analysed for soil salinity (ECe). Subsequently, multiple linear regression analysis was carried out between the obtained 

ECe values and S2 data, for the prediction of soil salinity models. The relationship between ECe and S2 data, including 

individual bands, band ratios and spectral indices showed moderate to highly significant correlations (R2 = 0.43–0.83). A 

combination of SWIR-1 bands and the simplified brightness index was found to be the most appropriate (R2 = 0.65; P < 0.001) 

for prediction of soil salinity. The results of this study demonstrate the ability to obtain reliable estimates of EC using S2 data. 

Sameh studied Sentinel-2 based mapping of soil salinity of arid soils in southeastern regions of Tunisia. In this study, 80 

samples were collected from the soil surface (the upper 10 cm). A predictive model was constructed based on the measured 

soil electrical conductivity (EC) and spectral indices developed from satellite image. The results revealed that salinity index 

SI1, SI2 and band 3 have the highest correlation with EC. Multiple regression analysis showed a moderate accuracy with R2 = 

0.42 and an RMSE = 18.3. 



International Journal of Environmental & Agriculture Research (IJOEAR)             ISSN:[2454-1850]               [Vol-10, Issue-10-, October- 2024] 

Page | 147  

TABLE 9 

MULTIPLE REGRESSION MODEL BETWEEN SPECTRAL INDICES AND MEASURED EC 

Regression model R2 RMSE 

EC= - 109.92-0.1b4 + 0.08b2-0.03b3-0.03SI2 + 0.07b8-0.05b6 + 0.03SI1 42% 18.3ds/m 

 

Gogumalla et al detected soil pH from open-source remote sensing data: A case study of Angul and Balangir Districts, Odisha 

State. The objective of this research was to estimate soil pH from Sentinel-1, Sentinel-2, and Landsat-8 satellite-derived indices; 

data from Sentinel-1, Sentinel-2, and Landsat-8 satellite missions were used to generate indices and as proxies in a statistical 

model to estimate soil pH. Step-wise multiple regression (SWMR), artificial neural networks (ANN), and random forest (RF) 

regression were used to develop predictive models for soil pH, SWMR, ANN, and RF regression models. The SWMR greedy 

method of variable selection was used to select the appropriate independent variables that were highly correlated with soil pH. 

Variables that were retained in the SWMR are B2, B11, Brightness index, Salinity index-2, Salinity index-5 of Sentinel-2 data; 

VH/VV index of Sentinel 1 and TIR1 (thermal infrared band1) Landsat-8 with p-value 0.05. Among the four statistical models 

developed, the class-wise RF model performed better than other models with a cumulative correlation coefficient of 0.87 and 

RMSE of 0.35. The better performance of class-wise RF models can be attributed to different spectral characteristics of 

different soil pH groups. 

Kaya et al studied predictive mapping of electrical conductivity and assessment of soil salinity in a Western Turkiye, Alluvial 

Plain. The current study area is located in the Isparta province (100 km2), land cover is mainly irrigated, and the dominant soils 

are Inceptisols, Mollisols, and Vertisols. Digital soil mapping (DSM) methodology was used, referring to the increase in the 

digital representation of soil formation factors with today’s technological advances. Plant and soil-based indices produced from 

the Sentinel 2A satellite image, topographic indices derived from the digital elevation model (DEM), and CORINE land cover 

classes were used as predictors. The support vector regression (SVR) algorithm revealed the best relationships in the study 

area. Considering the estimates of different algorithms, according to the FAO salinity classification, a minimum of 12.36% 

and a maximum of 20.19% of the study area can be classified as slightly saline. The low spatial dependence between model 

residuals limited the success of hybrid methods. The land irrigated cover played a significant role in predicting the current level 

of EC. 

Nada et al obtained salinity properties retrieval from Sentinel-2 satellites data and machine learning algorithms. The objective 

of this study was to achieve the best estimation of electrical conductivity variables from salt-affected soils in a south 

Mediterranean region using Sentinel-2 multispectral imagery. In order to realize this goal, a test was carried out using electrical 

conductivity (EC) data collected in central Tunisia. Soil electrical conductivity and leaf electrical conductivity were measured 

in an olive orchard over two growing seasons and under three irrigation treatments. Firstly, selected spectral salinity, 

chlorophyll, water, and vegetation indices were tested over the experimental area to estimate both soil and leaf EC using 

Sentinel-2 imagery on the Google Earth Engine platform. Subsequently, estimation models of soil and leaf EC were calibrated 

by employing machine learning (ML) techniques using 12 spectral bands of Sentinel-2 images. The prediction accuracy of the 

EC estimation was assessed by using k-fold cross-validation and computing statistical metrics. The results of the study revealed 

that machine learning algorithms, together with multispectral data, could advance the mapping and monitoring of soil and leaf 

electrical conductivity. 

2.4 Soil Texture: 

Bousbih et al estimated soil texture using radar and optical data from Sentinel-1 and Sentinel-2. The study is based on Sentinel-

1 (S-1) and Sentinel-2 (S-2) data acquired between July and early December 2017, on a semi-arid area about 3000 km2 in 

central Tunisia. In addition to satellite acquisitions, texture measurement samples were taken in several agricultural fields, 

characterized by a large range of clay contents (between 13% and 60%). For the period between July and August, various 

optical indicators of clay content Short-Wave Infrared (SWIR) bands and soil indices) were tested over bare soils. Satellite 

moisture products, derived from combined S-1 and S-2 data, were also tested as an indicator of soil texture. Algorithms based 

on the support vector machine (SVM) and random forest (RF) methods are proposed for the classification and mapping of clay 

content and a three-fold cross-validation is used to evaluate both approaches. The classifications with the best performance are 

achieved using the soil moisture indicator derived from combined S-1 and S-2 data, with overall accuracy (OA) of 63% and 

65% for the SVM and RF classifications, respectively. 
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Gomez et al used Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: 

Case of soil texture mapping. Two sources of uncertainty were studied: uncertainties due to the Sentinel-2 acquisition date and 

uncertainties due to the soil sample selection in the training dataset. The first uncertainty analysis was achieved by analysing 

the diversity of classification results obtained from the time series of soil texture classifications, considering that the temporal 

resolution is akin to a repetition of spectral measurements. The second uncertainty analysis was achieved from each individual 

Sentinel-2 image, based on a bootstrapping procedure corresponding to 100 independent classifications obtained with different 

training data. The Simpson index was used to compute this diversity in the classification results. This work was carried out in 

an Indian cultivated region (84 km2, part of Berambadi catchment, in the Karnataka state). It used a time-series of six Sentinel-

2 images acquired from February to April 2017 and 130 soil surface samples, collected over the study area and characterized 

in terms of texture. The classification analysis showed the following: (i) each single-date image analysis resulted in moderate 

performances for soil texture classification, and (ii) high confusion was obtained between neighbouring textural classes, and 

low confusion was obtained between remote textural classes. The uncertainty analysis showed that (i) the classification of 

remote textural classes (clay and sandy loam) was more certain than classifications of intermediate classes (sandy clay and 

sandy clay loam), (ii) a final soil textural map can be produced depending on the allowed uncertainty, and iii) a higher level of 

allowed uncertainty leads to increased bare soil coverage. These results illustrate the potential of Sentinel-2 for providing input 

for modelling environmental processes and crop management. 

Yanan et al identified soil texture classes under vegetation cover based on Sentinel-2 data with SVM and SHAP techniques. 

multitemporal Sentinel-2 images were used to get exhaustive vegetation cover information. Basic digital elevation map (DEM) 

derivatives and stratum were extracted. Three support vector machines with different input parameters (purely DEM derivatives 

and stratum, purely Sentinel-2, and Sentinel-2 plus DEM derivatives and stratum) were developed. Moreover, in order to 

improve the transparency in black box ML models, the novel SHapley Additive explanations (SHAP) method was applied to 

interpret the outputs and analyse the importance of individual variables. Results showed that the model with all variables 

provided desirable performance with overall accuracy of 0.8435, F1-score of 0.835, kappa statistic of 0.7642, precision of 

0.8388, recall of 0.8355, and area under the curve of 0.9451. The model with purely Sentinel-2 data performed much better 

than that with solely DEM derivatives and stratum. The contributions of Sentinel-2 data to explain soil texture class variability 

were about 17%, 41%, and 28% for sandy, loamy, and clayey soils, respectively. The SHAP method visualized the decision 

process of ML and indicated that elevation, stratum, and red-edge factors were critical variables for predicting soil texture 

classes. This study offered much-needed insights into the applications of Sentinel-2 data in digital soil mapping and ML-

assisted tasks. 

Miao et al mapped soil texture in Songnen plain of China using sentinel-2 imagery. For this study collecting 354 topsoil (0–20 

cm) samples in Songnen plain and evaluating the effectiveness of the bands and spectral indices of Sentinel-2 images and RF 

algorithm in predicting soil texture (sand, silt, and clay fractions). The results demonstrated that the 16 covariates were 

moderately and highly correlated with soil texture. And, Band11 of Sentinel-2 images could be used as the corresponding band 

of soil texture. For sand fraction, the Sentinel-2 images and RF algorithm’s Coefficient of Determination (R2) and Root Mean 

Square Error (RMSE) were 0.77 and 10.48%, respectively, and for silt fraction, they were 0.75 and 9.38%. Sand fraction 

decreased from southwest to northeast in Songnen plain, while silt and clay fractions increased. We found that the Songnen 

Plain was affected by water erosion and wind erosion, in the northeast and southwest, respectively, providing reference for the 

implementation of Conservation Tillage policies. The outcome of the study can provide reference for future soil texture 

mapping with a high resolution. 

2.5 All Soil Properties 

Vaudour et al studied Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean 

agroecosystems. Prediction models of soil properties based on partial least squares regressions (PLSR) were built from S2A 

spectra of 72 and 143 sampling locations across the Versailles Plain and Peyne catchment, respectively. Eight soil surface 

properties were investigated in both regions: pH, cation exchange capacity (CEC), texture fractions (Clay, Silt, Sand), Iron, 

Calcium Carbonate (CaCO3) and Soil Organic Carbon (SOC) content. Predictive abilities were studied according to the root 

mean square error of cross-validation (RMSECV) tests, cross-validated coefficient of determination (R2 cv) and ratio of 

performance to deviation (RPD). Intermediate prediction performance outcomes (R2 cv and RPD greater than or equal to 0.5 

and 1.4, respectively) were obtained for 4 topsoil properties found across the Versailles Plain (SOC, pH, CaCO3 and CEC), 

and near-intermediate performance outcomes (0.5 > R2 cv > 0.39, 1.4 > RPD > 1.3) were yielded for 3 topsoil properties (Clay, 

Iron, and CEC) found across the Peyne catchment and for 1 property (Clay) found across the Versailles Plain. The study results 

show what can be expected from Sentinel-2 images in terms of predictive capacities at the regional scale. The spatial structure 
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of the estimated soil properties for bare soils pixels is highlighted, promising further improvements made to spatial prediction 

models for these properties based on the use of Digital Soil Mapping (DSM) techniques. 

Santaga et al used sentinel-2 for simplifying soil sampling and mapping: Two case studies in Umbria, Italy. This study 

developed and tested a streamlined soil mapping methodology, applicable at the field scale, based on an unsupervised 

classification of Sentinel-2 (S2) data supporting the definition of reduced soil-sampling schemes. The study occurred in two 

agricultural fields of 20 hectares each near Deruta, Umbria, Italy. S2 images were acquired for the two bare fields. After a band 

selection based on bibliography, PCA (Principal Component Analysis) and cluster analysis were used to identify points of two 

reduced sample schemes. The data obtained by these samplings were used in linear regressions with principal components of 

the selected S2 bands to produce maps for clay and organic matter (OM). Resultant maps were assessed by analysing residuals 

with a conventional soil sampling of 30 soil samples for each field to quantify their accuracy level. Although of limited extent 

and with a specific focus, the low average errors (Clay ± 2.71%, OM ± 0.16%) we obtained using only three soil samples 

suggest a wider potential for this methodology. The proposed approach, integrating S2 data and traditional soil-sampling 

methods could considerably reduce soil-sampling time and costs in ordinary and precision agriculture applications. 

Yuvaraj et al performed spectral indices for soil properties: a case study from Redland farm, south Florida. In this work, they 

explore the capabilities of multispectral images (Sentinel 2A and Landsat 8) for accessing the dynamic soil properties of the 

study site. The predefined combinations of spectral band values (spectral indices) of Sentinel 2A and Landsat 8 image on the 

study area were used for evaluation. The correlation coefficient and linear regression models were demonstrated to assess the 

relationship between the derived spectral indices and five topsoil properties (Bulk Density (BD), Soil Organic Matter (SOM), 

Electric Conductivity (EC), pH, and Water Content). The results illustrated that specific soil properties (SOM, EC, pH, and 

BD) correlated well with different spectral indices with both images. Eight spectral bands combinations were found good with 

three soil properties with maximum correlation coefficient (R=0.623) for Sentinel 2A, and Landsat 8 has maximum correlation 

coefficient (R=0.463) of three spectral indices for two soil properties. The influence of distinct spectral bands of multispectral 

satellite images in soil surface properties involved in the best-suited indices algorithms was discussed in this article. Overall, 

we found that the spectral indices demonstrated promising results for this study, and hence they can be accounted for in soil 

investigation in agriculture. 

Piccoli et al estimated multiple soil characteristics of a continental-wide area corresponding to the European region, using 

multispectral Sentinel-3 satellite imagery and digital elevation model (DEM) derivatives. The results confirm the importance 

of multispectral imagery in the estimation of soil properties and specifically show that the use of DEM derivatives improves 

the quality of the estimates, in terms of R2, by about 19% on average. In particular, the estimation of soil texture increases by 

about 43%, and that of cation exchange capacity (CEC) by about 65%. The importance of each input source (multispectral and 

DEM) in predicting the soil properties using machine learning has been traced back. It has been found that, overall, the use of 

multispectral features is more important than the use of DEM derivatives with a ration, on average, of 60% versus 40%. 

III. CONCLUSION 

The study concluded that many researchers worked on estimating soil properties using sentinel-1, Sentinel-2 and Sentinel-3 

satellite data. In which according to the various researcher’s sentinel-2 data provide maximum accuracy during estimation of 

various properties along with various model. 
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